Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,259 result(s) for "Bio-assays"
Sort by:
Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses
• Vitellogenin (Vg) is a well-known nutritious protein involved in reproduction in nearly all oviparous animals, including insects. Recently, Vg has been detected in saliva proteomes of several piercing–sucking herbivorous arthropods, including the small brown planthopper (Laodelphax striatellus, SBPH). Its function, however, remains unexplored. • We investigated the molecular mechanism underlying SBPH orally secreted Vg-mediated manipulation of plant–insect interaction by RNA interference, phytohormone and H₂O₂ profiling, protein–protein interaction studies and herbivore bioassays. • A C-terminal polypeptide of Vg (VgC) in SBPH, when secreted into rice plants, acted as a novel effector to attenuate host rice defenses, which in turn improved insect feeding performance. Silencing Vg reduced insect feeding and survival on rice. Vg-silenced SBPH nymphs consistently elicited higher H₂O₂ production, a well-established defense mechanism in rice, whereas expression of VgC in planta significantly hindered hydrogen peroxide (H₂O₂) accumulation and promoted insect performance. VgC interacted directly with the rice transcription factor OsWRKY71, a protein which is involved in induction of H₂O₂ accumulation and plant resistance to SBPH. • These findings indicate a novel effector function of Vg: when secreted into host rice plants, this protein effectively weakened H₂O₂-mediated plant defense through its association with a plant immunity regulator.
Microbial \gardening\ by a seaweed holobiont: Surface metabolites attract protective and deter pathogenic epibacterial settlement
1. Epimicrobial communities on seaweed surfaces usually contain not only potentially pathogenic but also potentially beneficial micro-organisms. Capacity of terrestrial plants for chemically mediated recruitment, that is, \"gardening\" of bacterial communities in the rhizosphere was recently demonstrated. Empirical evidence directly linking such chemical \"gardening\" with the beneficial role of gardened microbes in terrestrial plants is rare and largely missing for aquatic macrophytes. 2. Here, we demonstrate that our model invasive seaweed holobiont Agarophyton vermiculophyllum possesses beneficial microbiota on its surface that provide protection from bacterial pathogens. Metabolites from the algal holobiont's surface reduced settlement of opportunistic pathogens but attracted protective epibacterial settlement. 3. We tested 58 different bacterial species (isolated from the surface of A. vermiculophyllum) individually in tip bleaching assays. Kordia algicida was identified as a \"significant pathogen\" inducing a bleaching disease. In addition, nine other species significantly reduced the risk of algal bleaching and were thus \"significantly protective\". Additionally, two \"potential pathogens\" and 10 \"potential protectors\" were identified. When 19 significant and potential protectors and 3 significant and potential pathogens were tested together, the protective strains fully prevented bleaching, suggesting that a component of A. vermiculophyllum's epimicrobiome provides an associational defence against pathogens. Chemically mediated selective recruitment of microbes was demonstrated in bioassays, where A. vermiculophyllum surface metabolites attracted the settlement of protective strains, but reduced settlement of pathogens. 4. Synthesis. The capacity of an aquatic macrophyte to chemically \"garden\" protective micro-organisms to the benefit of strengthened disease resistance is demonstrated for the first time. Such a role of surface chemistry in \"gardening\" of microbes as found in the current study could also be applicable to other host plant—microbe interactions. Our results may open new avenues towards manipulation of the surface microbiome of seaweeds via chemical \"gardening,\" enhancing sustainable production of healthy seaweeds.
Biological nitrification inhibition in maize—isolation and identification of hydrophobic inhibitors from root exudates
To control agronomic N losses and reduce environmental pollution, biological nitrification inhibition (BNI) is a promising strategy. BNI is an ecological phenomenon by which certain plants release bioactive compounds that can suppress nitrifying soil microbes. Herein, we report on two hydrophobic BNI compounds released from maize root exudation (1 and 2), together with two BNI compounds inside maize roots (3 and 4). On the basis of a bioassay-guided fractionation method using a recombinant nitrifying bacterium Nitrosomonas europaea, 2,7-dimethoxy-1,4-naphthoquinone (1, ED50 = 2 μM) was identified for the first time from dichloromethane (DCM) wash concentrate of maize root surface and named “zeanone.” The benzoxazinoid 2-hydroxy-4,7-dimethoxy-2H-1,4-benzoxazin-3(4H)-one (HDMBOA, 2, ED50 = 13 μM) was isolated from DCM extract of maize roots, and two analogs of compound 2, 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (HMBOA, 3, ED50 = 91 μM) and HDMBOA-β-glucoside (4, ED50 = 94 μM), were isolated from methanol extract of maize roots. Their chemical structures (1–4) were determined by extensive spectroscopic methods. The contributions of these four isolated BNI compounds (1–4) to the hydrophobic BNI activity in maize roots were 19%, 20%, 2%, and 4%, respectively. A possible biosynthetic pathway for zeanone (1) is proposed. These results provide insights into the strength of hydrophobic BNI activity released from maize root systems, the chemical identities of the isolated BNIs, and their relative contribution to the BNI activity from maize root systems.
Microbial methylation potential of mercury sulfide particles dictated by surface structure
Environmental contamination by mercury in its organometallic form, methylmercury, remains a major global concern due to its neurotoxicity, environmental persistence and biomagnification through the food chain. Accurate prediction of mercury methylation cannot be achieved based on aqueous speciation alone, and there remains limited mechanistic understanding of microbial methylation of particulate-phase mercury. Here we assess the time-dependent changes in structural properties and methylation potential of nanoparticulate mercury using microscopic and spectroscopic analyses, microcosm bioassays and theoretical calculations. We show that the methylation potential of a mercury sulfide mineral ubiquitous in contaminated soils and sediments (nanoparticulate metacinnabar) is determined by its crystal structure. Methylmercury production increases when more of nano-metacinnabar’s exposed surfaces occur as the (111) facet, due to its large binding affinity to methylating bacteria, likely via the protein transporter responsible for mercury cellular uptake prior to methylation. During nanocrystal growth, the (111) facet diminishes, lessening methylation of nano-metacinnabar. However, natural ligands alleviate this process by preferentially adsorbing to the (111) facet, and consequently hinder natural attenuation of mercury methylation. We show that the methylation potential of nanoparticulate mercury is independent of surface area. Instead, the nano-scale surface structure of nanoparticulate mercury is crucial for understanding the environmental behaviour of mercury and other nutrient or toxic soft elements. The environmental behaviour of mercury and other toxic soft elements is in part dictated by the surface structure of nanoparticulates, according to a combination of microcosm bioassays and theoretical calculations.
ANNEXIN1 mediates calcium‐dependent systemic defense in Arabidopsis plants upon herbivory and wounding
Cellular calcium (Ca) transients are endogenous signals involved in local and systemic sig- naling and defense activation upon environmental stress, including wounding and herbivory. Still, not all Ca 2+ channels contributing to the signaling have been identified, nor are their modes of action fully known. Plant annexins are proteins capable of binding to anionic phos- pholipids and can exhibit Ca channel-like activity. Arabidopsis ANNEXIN1 (ANN1) is sug- gested to contribute to Ca transport. Here, we report that wounding and simulated-herbivory-induced cytosolic free Ca eleva- tion was impaired in systemic leaves in ann1 loss-of-function plants. We provide evidence for a role of ANN1 in local and systemic defense of plants attacked by herbivorous Spodoptera littoralis larvae. Bioassays identified ANN1 as a positive defense regulator. Spodoptera littoralis feeding on ann1 gained significantly more weight than larvae feeding on wild-type, whereas those feed- ing on ANN1-overexpressing lines gained less weight. Herbivory and wounding both induced defense-related responses on treated leaves, such as jasmonate accumulation and defense gene expression. These responses remained local and were strongly reduced in systemic leaves in ann1 plants. Our results indicate that ANN1 plays an important role in activation of systemic rather than local defense in plants attacked by herbivorous insects.
Revisiting plant biological nitrification inhibition efficiency using multiple archaeal and bacterial ammonia-oxidising cultures
Nitrification is a major process within the nitrogen (N) cycle leading to global losses of N, including fertiliser N, from natural and agricultural systems and producing significant nitrous oxide emissions. One strategy for the mitigation of these losses involves nitrification inhibition by plant-derived biological nitrification inhibitors (BNIs). Cultivation-based studies of BNIs, including screening for new compounds, have predominantly investigated inhibition of a single ammonia-oxidising bacterium (AOB), Nitrosomonas europaea, even though ammonia oxidation in soil is usually dominated by ammonia-oxidising archaea (AOA), especially in acidic soils, and AOB Nitrosospira sp., rather than Nitrosomonas, in fertilised soils. This study aimed to assess the sensitivity of ammonia oxidation by a range of AOA and AOB pure cultures to BNIs produced by plant roots (methyl 3-(4-hydroxyphenyl) propionate, sakuranetin and 1,9-decanediol) and shoots (linoleic acid, linolenic acid and methyl linoleate). AOA were generally more sensitive to BNIs than AOB, and sensitivity was greater to BNIs produced by shoots than those produced by roots. Sensitivity also varied within AOA and AOB cultures and between different BNIs. In general, N. europaea was not a good indicator of BNI inhibition, and findings therefore highlight the limitations of use of a single bioassay strain and suggest the use of a broader range of strains that are more representative of natural soil communities.
The response of diazotrophs to nutrient amendment in the South China Sea and western North Pacific
The availability of iron (Fe) and phosphorus (P) has been shown to be a key factor regulating rates of nitrogen fixation in the western subtropical Pacific. However, the relative importance of Fe and P at finer spatial scales between the northern South China Sea (NSCS) and the western boundary of the North Pacific is poorly constrained. Furthermore, nutrient limitation of specific diazotroph types has not yet been assessed. Here we investigated these unknowns by (i) carrying out measurements of finer-scale spatial variabilities in N2 fixation rates and diazotroph nifH gene abundances throughout these regions and (ii) conducting eight additional Fe and phosphate addition bioassay experiments where both changes in N2 fixation rates and the nifH gene abundances of specific diazotrophs were measured. Overall, nitrogen fixation rates and nifH gene abundances were lower in the NSCS than around the Luzon Strait and the western North Pacific. The nutrient addition bioassay experiments demonstrated that N2 fixation rates in the central NSCS were co-limited by Fe and P, whereas at the western boundary of the North Pacific they were P-limited. Changes in the abundances of nifH in response to nutrient addition varied in how well they correlated with changes in N2 fixation rates, and in six out of eight experiments the largest responses in nifH gene abundances were dominated by either Trichodesmium or UCYN-B (unicellular diazotrophic cyanobacteria group B). In general, nutrient addition had a relatively restricted impact on the composition of the six phylotypes that we surveyed apart from on UCYN-B. This unicellular cyanobacterium group showed increased contribution to the total nifH gene abundance following P addition at sites where N2 fixation rates were P-limited. Our study provides comprehensive evidence of nutrient controls on N2 fixation biogeography in the margin of the western North Pacific. Future research that more accurately constrains nutrient supply rates to this region would be beneficial for resolving what controls diazotroph community structure.
Field Efficacy of Insecticides for Management of Invasive Fall Armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) on Maize in India
The invasive fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), was reported for the first time causing severe damage on maize in Karnataka, India, during May 2018. Thereafter, the pest has spread to most states of India and then spread to other Asian countries, including Thailand, Sri Lanka, Bangladesh, Myanmar, Vietnam, Laos, and China. Being a new invasive, there is no information on its susceptibility to insecticides. Hence, insecticides having different modes of action were evaluated for control of second instar larvae by the leaf-dip bioassay method, as well as under field conditions both in Jun and Sep. Emamectin benzoate 5 SG showed the highest acute toxicity, followed by chlorantraniliprole18.5 SC, and spinetoram 11.7 SC, whereas toxicities of flubendiamide 480 SC, indoxacarb 14.5 SC, lambda-cyhalothrin5 EC, and novaluron10 EC were at par by the leaf-dip bioassay. The results of field efficacy for 2 planting dates (Jun sown crop, and Sep sown crop 2018) revealed that the effective insecticides were chlorantraniliprole 18.5 SC, followed by emamectin benzoate 5 SG, spinetoram 11.7 SC, flubendiamide 480 SC, indoxacarb 14.5 SC, lambda cyhalothrin 5 EC, and novaluron 10 EC. Higher efficacy also was correlated with higher grain yield in comparison with the control. Chlorantraniliprole, emamectin benzoate, and spinetoram are suitable as one of the components of Integrated Pest Management of fall armyworm in India.
Inhibitory and toxic effects of extracellular self‐DNA in litter: a mechanism for negative plant–soil feedbacks?
Plant–soil negative feedback (NF) is recognized as an important factor affecting plant communities. The objectives of this work were to assess the effects of litter phytotoxicity and autotoxicity on root proliferation, and to test the hypothesis that DNA is a driver of litter autotoxicity and plant–soil NF. The inhibitory effect of decomposed litter was studied in different bioassays. Litter biochemical changes were evaluated with nuclear magnetic resonance (NMR) spectroscopy. DNA accumulation in litter and soil was measured and DNA toxicity was assessed in laboratory experiments. Undecomposed litter caused nonspecific inhibition of root growth, while autotoxicity was produced by aged litter. The addition of activated carbon (AC) removed phytotoxicity, but was ineffective against autotoxicity. Phytotoxicity was related to known labile allelopathic compounds. Restricted¹³C NMR signals related to nucleic acids were the only ones negatively correlated with root growth on conspecific substrates. DNA accumulation was observed in both litter decomposition and soil history experiments. Extracted total DNA showed evident species‐specific toxicity. Results indicate a general occurrence of litter autotoxicity related to the exposure to fragmented self‐DNA. The evidence also suggests the involvement of accumulated extracellular DNA in plant–soil NF. Further studies are needed to further investigate this unexpected function of extracellular DNA at the ecosystem level and related cellular and molecular mechanisms.
Origins and bioavailability of dissolved organic matter in groundwater
Dissolved organic matter (DOM) in groundwater influences water quality and fuels microbial metabolism, but its origins, bioavailability and chemical composition are poorly understood. The origins and concentrations of dissolved organic carbon (DOC) and bioavailable DOM were monitored during a long-term (2-year) study of groundwater in a fractured-rock aquifer in the Carolina slate belt. Surface precipitation was significantly correlated with groundwater concentrations of DOC, bioavailable DOM and chromophoric DOM, indicating strong hydrological connections between surface and ground waters. The physicochemical and biological processes shaping the concentrations and compositions of DOM during its passage through the soil column to the saturated zone are conceptualized in the regional chromatography model. The model provides a framework for linking hydrology with the processes affecting the transformation, remineralization and microbial production of DOM during passage through the soil column. Lignin-derived phenols were relatively depleted in groundwater DOM indicating substantial removal in the unsaturated zone, and optical properties of chromophoric DOM indicated lower molecular weight DOM in groundwater relative to surface water. The prevalence of glycine, γ-aminobutyric acid, and D-enantiomers of amino acids indicated the DOM was highly diagenetically altered. Bioassay experiments were used to establish DOC-normalized yields of amino acids as molecular indicators of DOM bioavailability in groundwater. A relatively small fraction (8 ± 4 %) of DOC in groundwater was bioavailable. The relatively high yields of specific D-enantiomers of amino acids indicated a substantial fraction (15–34 %) of groundwater DOC was of bacterial origin.