Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
2,606 result(s) for "Biochemical Phenomena"
Sort by:
Structural analysis of the GPI glycan
Glycosylphosphatidylinositol (GPI) anchoring of proteins is an essential post-translational modification in all eukaryotes that occurs at the endoplasmic reticulum (ER) and serves to deliver GPI-anchored proteins (GPI-APs) to the cell surface where they play a wide variety of vital physiological roles. This paper describes a specialized method for purification and structural analysis of the GPI glycan of individual GPI-APs in yeast. The protocol involves the expression of a specific GPI-AP tagged with GFP, enzymatic release from the cellular membrane fraction, immunopurification, separation by electrophoresis and analysis of the peptides bearing GPI glycans by mass spectrometry after trypsin digestion. We used specifically this protocol to address the structural remodeling that undergoes the GPI glycan of a specific GPI-AP during its transport to the cell surface. This method can be also applied to investigate the GPI-AP biosynthetic pathway and to directly confirm predicted GPI-anchoring of individual proteins.
Zinc-α2-Glycoprotein Modulates AKT-Dependent Insulin Signaling in Human Adipocytes by Activation of the PP2A Phosphatase
Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG) is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT) remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes. ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR) antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR. ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG. ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner.
The chemical reactions of life : from metabolism to photosynthesis
Presents an introduction to the biochemistry, describes the history of the science, and discusses chemical reactions found in plants and animals.
Body Composition in Sport, Exercise and Health
The analysis of body composition (fat, bone and muscle) is an important process throughout the biomedical sciences. This is the first book to offer a clear and detailed introduction to the key methods and techniques in body composition analysis and to explain the importance of body composition data in the context of sport, exercise and health. With contributions from some of the world's leading body composition specialists, the book goes further than any other in demonstrating the practical and applied value of body composition analysis in areas such as performance sport and weight control in clinical populations. The book pays particular attention to the important concept of change in body composition, and includes discussion of ethical issues in the collection, interpretation and presentation of data, and considerations when working with special populations. Bridging the gap between research methods and practical application, this book is important reading for advanced students and practitioners working in sport and exercise science, health science, anatomy, nutrition, physical therapy or ergonomics.
Identifying sources of variation and the flow of information in biochemical networks
To understand how cells control and exploit biochemical fluctuations, we must identify the sources of stochasticity, quantify their effects, and distinguish informative variation from confounding \"noise.\" We present an analysis that allows fluctuations of biochemical networks to be decomposed into multiple components, gives conditions for the design of experimental reporters to measure all components, and provides a technique to predict the magnitude of these components from models. Further, we identify a particular component of variation that can be used to quantify the efficacy of information flow through a biochemical network. By applying our approach to osmosensing in yeast, we can predict the probability of the different osmotic conditions experienced by wild-type yeast and show that the majority of variation can be informational if we include variation generated in response to the cellular environment. Our results are fundamental to quantifying sources of variation and thus are a means to understand biological \"design.\"
Modulation of MicroRNAs by Phytochemicals in Cancer: Underlying Mechanisms and Translational Significance
MicroRNAs (miRNAs) are small, endogenous noncoding RNAs that regulate a variety of biological processes such as differentiation, development, and survival. Recent studies suggest that miRNAs are dysregulated in cancer and play critical roles in cancer initiation, progression, and chemoresistance. Therefore, exploitation of miRNAs as targets for cancer prevention and therapy could be a promising approach. Extensive evidence suggests that many naturally occurring phytochemicals regulate the expression of numerous miRNAs involved in the pathobiology of cancer. Therefore, an understanding of the regulation of miRNAs by phytochemicals in cancer, their underlying molecular mechanisms, and functional consequences on tumor pathophysiology may be useful in formulating novel strategies to combat this devastating disease. These aspects are discussed in this review paper with an objective of highlighting the significance of these observations from the translational standpoint.