Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
622,147
result(s) for
"Biochemistry and Molecular Biology"
Sort by:
Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis
by
Rachubinski, Richard A.
,
Ball, Steven G.
,
Gentekaki, Eleni
in
Amino acid sequence
,
Amino acids
,
Bacteriology
2017
Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than β-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.
Journal Article
Thymus alterations and susceptibility to immune checkpoint inhibitor myocarditis
by
Tubach, Florence
,
Leonard-Louis, Sarah
,
Dolladille, Charles
in
692/308/575
,
692/699/67/580/1884
,
Acetylcholine receptors
2023
Immune checkpoint inhibitors (ICI) have transformed the therapeutic landscape in oncology. However, ICI can induce uncommon life-threatening autoimmune T-cell-mediated myotoxicities, including myocarditis and myositis. The thymus plays a critical role in T cell maturation. Here we demonstrate that thymic alterations are associated with increased incidence and severity of ICI myotoxicities. First, using the international pharmacovigilance database VigiBase, the Assistance Publique Hôpitaux de Paris–Sorbonne University data warehouse (Paris, France) and a meta-analysis of clinical trials, we show that ICI treatment of thymic epithelial tumors (TET, and particularly thymoma) was more frequently associated with ICI myotoxicities than other ICI-treated cancers. Second, in an international ICI myocarditis registry, we established that myocarditis occurred earlier after ICI initiation in patients with TET (including active or prior history of TET) compared to other cancers and was more severe in terms of life-threatening arrythmias and concurrent myositis, leading to respiratory muscle failure and death. Lastly, we show that presence of anti-acetylcholine-receptor antibodies (a biological proxy of thymic-associated autoimmunity) was more prevalent in patients with ICI myocarditis than in ICI-treated control patients. Altogether, our results highlight that thymic alterations are associated with incidence and seriousness of ICI myotoxicities. Clinico-radio-biological workup evaluating the thymus may help in predicting ICI myotoxicities.
Thymic epithelial tumors are associated with increased risk of immune checkpoint inhibitor (ICI)-induced myotoxicities, and the presence of anti-acetylcholine-receptor antibodies has the potential to serve as a biomarker for ICI-induced myocarditis in patients with cancer.
Journal Article
A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers
by
Dolfe, Lisa
,
Fisahn, André
,
Knowles, Tuomas P J
in
631/57/2272/1590
,
631/57/2272/2276
,
Agglomeration
2015
Aβ peptide aggregation is associated with Alzheimer's disease, and Aβ fibrils can catalyze formation of toxic oligomers. Molecular chaperone Brichos binds to the fibril surface, inhibiting the catalytic cycle
in vitro
, and limits Aβ toxicity.
Alzheimer's disease is an increasingly prevalent neurodegenerative disorder whose pathogenesis has been associated with aggregation of the amyloid-β peptide (Aβ42). Recent studies have revealed that once Aβ42 fibrils are generated, their surfaces effectively catalyze the formation of neurotoxic oligomers. Here we show that a molecular chaperone, a human Brichos domain, can specifically inhibit this catalytic cycle and limit human Aβ42 toxicity. We demonstrate
in vitro
that Brichos achieves this inhibition by binding to the surfaces of fibrils, thereby redirecting the aggregation reaction to a pathway that involves minimal formation of toxic oligomeric intermediates. We verify that this mechanism occurs in living mouse brain tissue by cytotoxicity and electrophysiology experiments. These results reveal that molecular chaperones can help maintain protein homeostasis by selectively suppressing critical microscopic steps within the complex reaction pathways responsible for the toxic effects of protein misfolding and aggregation.
Journal Article
A three-dimensional movie of structural changes in bacteriorhodopsin
by
Kubo, Minora
,
Hosaka, Toshiaki
,
Shimamura, Tatsuro
in
angstrom resolution
,
Bacteria
,
Bacteriorhodopsin
2016
Bacteriorhodopsin (bR) is a light-driven proton pump and a model membrane transport protein. We used time-resolved serial femtosecond crystallography at an x-ray free electron laser to visualize conformational changes in bR from nanoseconds to milliseconds following photoactivation. An initially twisted retinal chromophore displaces a conserved tryptophan residue of transmembrane helix F on the cytoplasmic side of the protein while dislodging a key water molecule on the extracellular side. The resulting cascade of structural changes throughout the protein shows how motions are choreographed as bR transports protons uphill against a transmembrane concentration gradient.
Journal Article
Plasmodesmata mediate cell-to-cell transport of brassinosteroid hormones
by
Perez-Sancho, Jessica
,
Luo, Yongming
,
Kvasnica, Miroslav
in
631/449/1741
,
631/449/2675
,
631/80/313
2023
Brassinosteroids (BRs) are steroidal phytohormones that are essential for plant growth, development and adaptation to environmental stresses. BRs act in a dose-dependent manner and do not travel over long distances; hence, BR homeostasis maintenance is critical for their function. Biosynthesis of bioactive BRs relies on the cell-to-cell movement of hormone precursors. However, the mechanism of the short-distance BR transport is unknown, and its contribution to the control of endogenous BR levels remains unexplored. Here we demonstrate that plasmodesmata (PD) mediate the passage of BRs between neighboring cells. Intracellular BR content, in turn, is capable of modulating PD permeability to optimize its own mobility, thereby manipulating BR biosynthesis and signaling. Our work uncovers a thus far unknown mode of steroid transport in eukaryotes and exposes an additional layer of BR homeostasis regulation in plants.
Genetic and bioorthogonal chemistry approaches reveal cell-to-cell movement of brassinosteroid (BR) hormones via plasmodesmata in plants. In turn, BRs positively regulate callose deposition at plasmodesmata to balance its own biosynthesis.
Journal Article
The human cap-binding complex is functionally connected to the nuclear RNA exosome
by
Domanski, Michal
,
Bunkenborg, Jakob
,
Ntini, Evgenia
in
631/337/1645
,
631/337/384/2568
,
631/337/572
2013
How the nuclear exosome is targeted to nuclear RNA substrates is poorly understood. An affinity-capture MS approach and functional analyses now demonstrate a physical and functional connection between the human exosome and the cap-binding complex (CBC). A CBC-containing complex was found to promote transcription termination of several RNA types, thus suggesting a direct link to exosomal RNA degradation.
Nuclear processing and quality control of eukaryotic RNA is mediated by the RNA exosome, which is regulated by accessory factors. However, the mechanism of exosome recruitment to its ribonucleoprotein (RNP) targets remains poorly understood. Here we report a physical link between the human exosome and the cap-binding complex (CBC). The CBC associates with the ARS2 protein to form CBC–ARS2 (CBCA) and then further connects, together with the ZC3H18 protein, to the nuclear exosome targeting (NEXT) complex, thus forming CBC–NEXT (CBCN). RNA immunoprecipitation using CBCN factors as well as the analysis of combinatorial depletion of CBCN and exosome components underscore the functional relevance of CBC-exosome bridging at the level of target RNA. Specifically, CBCA suppresses read-through products of several RNA families by promoting their transcriptional termination. We suggest that the RNP 5′ cap links transcription termination to exosomal RNA degradation through CBCN.
Journal Article
Does Acinetobacter calcoaceticus glucose dehydrogenase produce self-damaging H2O2?
by
Cloée Jean
,
Andrew Thompson
,
Brice Kauffmann
in
[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM]
,
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM]
,
Acinetobacter calcoaceticus - enzymology
2024
The soluble glucose dehydrogenase (sGDH) from Acinetobacter calcoaceticus has been widely studied and is used, in biosensors, to detect the presence of glucose, taking advantage of its high turnover and insensitivity to molecular oxygen. This approach, however, presents two drawbacks: the enzyme has broad substrate specificity (leading to imprecise blood glucose measurements) and shows instability over time (inferior to other oxidizing glucose enzymes). We report the characterization of two sGDH mutants: the single mutant Y343F and the double mutant D143E/Y343F. The mutants present enzyme selectivity and specificity of 1.2 (Y343F) and 5.7 (D143E/Y343F) times higher for glucose compared with that of the wild-type. Crystallographic experiments, designed to characterize these mutants, surprisingly revealed that the prosthetic group PQQ (pyrroloquinoline quinone), essential for the enzymatic activity, is in a cleaved form for both wild-type and mutant structures. We provide evidence suggesting that the sGDH produces H2O2, the level of production depending on the mutation. In addition, spectroscopic experiments allowed us to follow the self-degradation of the prosthetic group and the disappearance of sGDH's glucose oxidation activity. These studies suggest that the enzyme is sensitive to its self-production of H2O2. We show that the premature aging of sGDH can be slowed down by adding catalase to consume the H2O2 produced, allowing the design of a more stable biosensor over time. Our research opens questions about the mechanism of H2O2 production and the physiological role of this activity by sGDH.
Journal Article
Oil Accumulation by the Oleaginous Diatom Fistulifera solaris as Revealed by the Genome and Transcriptome
by
Wong, Pui Shan
,
Muto, Masaki
,
Tanaka, Tsuyoshi
in
Bacillariophyceae
,
Biochemistry, Molecular Biology
,
Biotechnology
2015
Oleaginous photosynthetic organisms such as microalgae are promising sources for biofuel production through the generation of carbon-neutral sustainable energy. However, the metabolic mechanisms driving high-rate lipid production in these oleaginous organisms remain unclear, thus impeding efforts to improve productivity through genetic modifications. We analyzed the genome and transcriptome of the oleaginous diatom Fistulifera solaris JPCC DA0580. Next-generation sequencing technology provided evidence of an allodiploid genome structure, suggesting unorthodox molecular evolutionary and genetic regulatory systems for reinforcing metabolic efficiencies. Although major metabolic pathways were shared with nonoleaginous diatoms, transcriptome analysis revealed unique expression patterns, such as concomitant upregulation of fatty acid/triacylglycerol biosynthesis and fatty acid degradation (β-oxidation) in concert with ATP production. This peculiar pattern of gene expression may account for the simultaneous growth and oil accumulation phenotype and may inspire novel biofuel production technology based on this oleaginous microalga.
Journal Article
Deimination and Peptidylarginine Deiminases in Skin Physiology and Diseases
2020
Deimination, also known as citrullination, corresponds to the conversion of the amino acid arginine, within a peptide sequence, into the non-standard amino acid citrulline. This post-translational modification is catalyzed by a family of calcium-dependent enzymes called peptidylarginine deiminases (PADs). Deimination is implicated in a growing number of physiological processes (innate and adaptive immunity, gene regulation, embryonic development, etc.) and concerns several human diseases (rheumatoid arthritis, neurodegenerative diseases, female infertility, cancer, etc.). Here, we update the involvement of PADs in both the homeostasis of skin and skin diseases. We particularly focus on keratinocyte differentiation and the epidermal barrier function, and on hair follicles. Indeed, alteration of PAD activity in the hair shaft is responsible for two hair disorders, the uncombable hair syndrome and a particular form of inflammatory scarring alopecia, mainly affecting women of African ancestry.
Journal Article
The power of imaging to understand extracellular vesicle biology in vivo
by
van Royen Martin E
,
Nolte-‘t Hoen Esther N M
,
Raposo Graça
in
Biochemical analysis
,
Biodistribution
,
Biology
2021
Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by virtually every cell type. EVs have diverse biological activities, ranging from roles in development and homeostasis to cancer progression, which has spurred the development of EVs as disease biomarkers and drug nanovehicles. Owing to the small size of EVs, however, most studies have relied on isolation and biochemical analysis of bulk EVs separated from biofluids. Although informative, these approaches do not capture the dynamics of EV release, biodistribution, and other contributions to pathophysiology. Recent advances in live and high-resolution microscopy techniques, combined with innovative EV labeling strategies and reporter systems, provide new tools to study EVs in vivo in their physiological environment and at the single-vesicle level. Here we critically review the latest advances and challenges in EV imaging, and identify urgent, outstanding questions in our quest to unravel EV biology and therapeutic applications.This Review describes the state of the art in imaging extracellular vesicles in animals to study their release, biodistribution and uptake, and covers labeling strategies, microscopy methods and discoveries made in model organisms.
Journal Article