Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
964
result(s) for
"Biodegradable Plastics - chemistry"
Sort by:
Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone
2016
Ring-opening polymerization (ROP) is a powerful synthetic methodology for the chemical synthesis of technologically important biodegradable aliphatic polyesters from cyclic esters or lactones. However, the bioderived five-membered γ-butyrolactone (γ-BL) is commonly referred as ‘non-polymerizable’ because of its low strain energy. The chemical synthesis of poly(γ-butyrolactone) (PγBL) through the ROP process has been realized only under ultrahigh pressure (20,000 atm, 160 °C) and only produces oligomers. Here we report that the ROP of γ-BL can, with a suitable catalyst, proceed smoothly to high conversions (90%) under ambient pressure to produce PγBL materials with a number-average molecular weight up to 30 kg mol
–1
and with controlled linear and/or cyclic topologies. Remarkably, both linear and cyclic PγBLs can be recycled back into the monomer in quantitative yield by simply heating the bulk materials at 220 °C (linear polymer) or 300 °C (cyclic polymer) for one hour, which thereby demonstrates the complete recyclability of PγBL.
Bio-derived γ-butyrolactone (γ-BL) is commonly referred to as ‘non-polymerizable’ due to its low strain energy. Now it has been shown that ring-opening polymerization of γ-BL can in fact proceed to high conversions under ambient pressure with a suitable catalyst, producing high-molecular-weight polymers with controlled topologies and complete recyclability.
Journal Article
An engineered enzyme embedded into PLA to make self-biodegradable plastic
by
Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
,
Dalibey, M
,
Vuillemin, M
in
101/28
,
119/118
,
38/23
2024
Plastic production reached 400 million tons in 2022 (ref. 1), with packaging and single-use plastics accounting for a substantial amount of this2. The resulting waste ends up in landfills, incineration or the environment, contributing to environmental pollution3. Shifting to biodegradable and compostable plastics is increasingly being considered as an efficient waste-management alternative4. Although polylactide (PLA) is the most widely used biosourced polymer5, its biodegradation rate under home-compost and soil conditions remains low6-8. Here we present a PLA-based plastic in which an optimized enzyme is embedded to ensure rapid biodegradation and compostability at room temperature, using a scalable industrial process. First, an 80-fold activity enhancement was achieved through structure-based rational engineering of a new hyperthermostable PLA hydrolase. Second, the enzyme was uniformly dispersed within the PLA matrix by means of a masterbatch-based melt extrusion process. The liquid enzyme formulation was incorporated in polycaprolactone, a low-melting-temperature polymer, through melt extrusion at 70 °C, forming an 'enzymated' polycaprolactone masterbatch. Masterbatch pellets were integrated into PLA by melt extrusion at 160 °C, producing an enzymated PLA film (0.02% w/w enzyme) that fully disintegrated under home-compost conditions within 20-24 weeks, meeting home-composting standards. The mechanical and degradation properties of the enzymated film were compatible with industrial packaging applications, and they remained intact during long-term storage. This innovative material not only opens new avenues for composters and biomethane production but also provides a feasible industrial solution for PLA degradation.
Journal Article
Biodegradation Behavior of Poly(Butylene Adipate-Co-Terephthalate) (PBAT), Poly(Lactic Acid) (PLA), and Their Blend in Freshwater with Sediment
by
Bian, Xinchao
,
Wu, Gang
,
Zeng, Jianbing
in
Biodegradable materials
,
Biodegradable Plastics - chemistry
,
Biodegradation
2020
Poly(butylene adipate-co-terephthalate) (PBAT) and poly(lactic acid) (PLA) are well-known biodegadable polyesters due to their outstanding performance. The biodegradation behavior of PLA/PBAT blends in freshwater with sediment is investigated in this study by analyzing the appearance, chemical structure and aggregation structure of their degraded residues via SEM, TG, DSC, gel permeation chromatography (GPC) and XPS. The effect of aggregation structure, hydrophilia and biodegradation mechanisms of PBAT and PLA on the biodegradability of PLA/PBAT blends is illuminated in this work. After biodegradation, the butylene terephthalate unit in the molecular structure of the components and the molecular weight of PLA/PBAT blends decreased, while the content of C-O bond in the composites increased, indicating that the samples indeed degraded. After 24 months of degradation, the increase in the relative peak area proportion of C-O to C=O in PLA/PBAT-25, PLA/PBAT-50 and PLA/PBAT-75 was 62%, 46% and 68%, respectively. The biodegradation rates of PBAT and PLA in the PLA/PBAT blend were lower than those for the respective single polymers.
Journal Article
Ocular Drug Delivery: Role of Degradable Polymeric Nanocarriers for Ophthalmic Application
by
Tsai, Cheng-Han
,
Lin, I-Chan
,
Tseng, Ching-Li
in
Administration, Ophthalmic
,
Animals
,
Bioavailability
2018
Ocular drug delivery has been a major challenge for clinical pharmacologists and biomaterial scientists due to intricate and unique anatomical and physiological barriers in the eye. The critical requirement varies from anterior and posterior ocular segments from a drug delivery perspective. Recently, many new drugs with special formulations have been introduced for targeted delivery with modified methods and routes of drug administration to improve drug delivery efficacy. Current developments in nanoformulations of drug carrier systems have become a promising attribute to enhance drug retention/permeation and prolong drug release in ocular tissue. Biodegradable polymers have been explored as the base polymers to prepare nanocarriers for encasing existing drugs to enhance the therapeutic effect with better tissue adherence, prolonged drug action, improved bioavailability, decreased toxicity, and targeted delivery in eye. In this review, we summarized recent studies on sustained ocular drug/gene delivery and emphasized on the nanocarriers made by biodegradable polymers such as liposome, poly lactic-co-glycolic acid (PLGA), chitosan, and gelatin. Moreover, we discussed the bio-distribution of these nanocarriers in the ocular tissue and their therapeutic applications in various ocular diseases.
Journal Article
Biofilm and Diatom Succession on Polyethylene (PE) and Biodegradable Plastic Bags in Two Marine Habitats: Early Signs of Degradation in the Pelagic and Benthic Zone?
by
Eich, Andreas
,
Mildenberger, Tobias
,
Laforsch, Christian
in
Aquatic habitats
,
Benthic zone
,
Biodegradability
2015
The production of biodegradable plastic is increasing. Given the augmented littering of these products an increasing input into the sea is expected. Previous laboratory experiments have shown that degradation of plastic starts within days to weeks. Little is known about the early composition and activity of biofilms found on biodegradable and conventional plastic debris and its correlation to degradation in the marine environment. In this study we investigated the early formation of biofilms on plastic shopper bags and its consequences for the degradation of plastic. Samples of polyethylene and biodegradable plastic were tested in the Mediterranean Sea for 15 and 33 days. The samples were distributed equally to a shallow benthic (sedimentary seafloor at 6 m water depth) and a pelagic habitat (3 m water depth) to compare the impact of these different environments on fouling and degradation. The amount of biofilm increased on both plastic types and in both habitats. The diatom abundance and diversity differed significantly between the habitats and the plastic types. Diatoms were more abundant on samples from the pelagic zone. We anticipate that specific surface properties of the polymer types induced different biofilm communities on both plastic types. Additionally, different environmental conditions between the benthic and pelagic experimental site such as light intensity and shear forces may have influenced unequal colonisation between these habitats. The oxygen production rate was negative for all samples, indicating that the initial biofilm on marine plastic litter consumes oxygen, regardless of the plastic type or if exposed in the pelagic or the benthic zone. Mechanical tests did not reveal degradation within one month of exposure. However, scanning electron microscopy (SEM) analysis displayed potential signs of degradation on the plastic surface, which differed between both plastic types. This study indicates that the early biofilm formation and composition are affected by the plastic type and habitat. Further, it reveals that already within two weeks biodegradable plastic shows signs of degradation in the benthic and pelagic habitat.
Journal Article
Flexible shape-memory scaffold for minimally invasive delivery of functional tissues
2017
Despite great progress in engineering functional tissues for organ repair, including the heart, an invasive surgical approach is still required for their implantation. Here, we designed an elastic and microfabricated scaffold using a biodegradable polymer (poly(octamethylene maleate (anhydride) citrate)) for functional tissue delivery via injection. The scaffold’s shape memory was due to the microfabricated lattice design. Scaffolds and cardiac patches (1 cm × 1 cm) were delivered through an orifice as small as 1 mm, recovering their initial shape following injection without affecting cardiomyocyte viability and function. In a subcutaneous syngeneic rat model, injection of cardiac patches was equivalent to open surgery when comparing vascularization, macrophage recruitment and cell survival. The patches significantly improved cardiac function following myocardial infarction in a rat, compared with the untreated controls. Successful minimally invasive delivery of human cell-derived patches to the epicardium, aorta and liver in a large-animal (porcine) model was achieved.
Cardiac repair usually requires highly invasive interventional procedures. Here, the authors develop an injectable shape-memory cardiac patch and demonstrated its applicability in a myocardial infarction model.
Journal Article
Bioplastic (poly-3-hydroxybutyrate) production by the marine bacterium Pseudodonghicola xiamenensis through date syrup valorization and structural assessment of the biopolymer
2020
Biobased degradable plastics have received significant attention owing to their potential application as a green alternative to synthetic plastics. A dye-based procedure was used to screen poly-3-hydroxybutyrate (PHB)-producing marine bacteria isolated from the Red Sea, Saudi Arabia. Among the 56 bacterial isolates,
Pseudodonghicola xiamenensis
, identified using 16S rRNA gene analyses, accumulated the highest amount of PHB. The highest PHB production by
P. xiamenensis
was achieved after 96 h of incubation at pH 7.5 and 35 °C in the presence of 4% NaCl, and peptone was the preferred nitrogen source. The use of date syrup at 4% (w/v) resulted in a PHB concentration of 15.54 g/L and a PHB yield of 38.85% of the date syrup, with a productivity rate of 0.162 g/L/h, which could substantially improve the production cost. Structural assessment of the bioplastic by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy revealed the presence of methyl, hydroxyl, methine, methylene, and ester carbonyl groups in the extracted polymer. The derivative products of butanoic acid estimated by gas chromatography-mass spectrometry [butanoic acid, 2-amino-4-(methylseleno), hexanoic acid, 4-methyl-, methyl ester, and hexanedioic acid, monomethyl ester] confirmed the structure of PHB. The present results are the first report on the production of a bioplastic by
P. xiamenensis
, suggesting that Red Sea habitats are a potential biological reservoir for novel bioplastic-producing bacteria.
Journal Article
Development and characterization of starch bioplastics as a sustainable alternative for packaging
by
Navasingh, Rajesh Jesudoss Hynes
,
Gurunathan, Manoj Kumar
,
Čep, Robert
in
631/45
,
639/166
,
639/301
2025
Due to the growing environmental concerns of petroleum-based plastics, there has been a surge of interest in biodegradable alternatives. In this study, starch-based bioplastic was prepared using biopolymers extracted from corn and potato and the biopolymer was mixed with calcium carbonate (filler) and plasticizers (glycerol-sorbitol) and evaluated. For the fabricated formulation, Taguchi analysis gave an optimal formulation of 9 g corn starch, 9 mL glycerol, and 2.5 g calcium carbonate, having a well-balanced mechanical strength, flexibility, and biodegradability. The results showed a major improvement in tensile strength of 22.5% (6.08 MPa) and a 31.7% increase in Young’s modulus (0.103 GPa), compared to the least effective sample. In biodegradation tests, the degradation rate of C1 (66.68%) was the fastest, while C3 had a slower rate (29.08%). Moisture absorption varied considerably, with sample COM3 absorbing 25.92% compared to just 4.35% for P3, while P3 absorbed only 4.35%. Among compounds, the higher and lower percentage for water solubility were for P1 (20.50%) and C3 (49.04%) respectively. These results underscore the potential of starch-based bioplastics for sustainable packaging, offering an environmentally friendly option compared to traditional plastics.
Journal Article
Antimicrobial Food Packaging with Biodegradable Polymers and Bacteriocins
2021
Innovations in food and drink packaging result mainly from the needs and requirements of consumers, which are influenced by changing global trends. Antimicrobial and active packaging are at the forefront of current research and development for food packaging. One of the few natural polymers on the market with antimicrobial properties is biodegradable and biocompatible chitosan. It is formed as a result of chitin deacetylation. Due to these properties, the production of chitosan alone or a composite film based on chitosan is of great interest to scientists and industrialists from various fields. Chitosan films have the potential to be used as a packaging material to maintain the quality and microbiological safety of food. In addition, chitosan is widely used in antimicrobial films against a wide range of pathogenic and food spoilage microbes. Polylactic acid (PLA) is considered one of the most promising and environmentally friendly polymers due to its physical and chemical properties, including renewable, biodegradability, biocompatibility, and is considered safe (GRAS). There is great interest among scientists in the study of PLA as an alternative food packaging film with improved properties to increase its usability for food packaging applications. The aim of this review article is to draw attention to the existing possibilities of using various components in combination with chitosan, PLA, or bacteriocins to improve the properties of packaging in new food packaging technologies. Consequently, they can be a promising solution to improve the quality, delay the spoilage of packaged food, as well as increase the safety and shelf life of food.
Journal Article
Novel Bioplastic Based on PVA Functionalized with Anthocyanins: Synthesis, Biochemical Properties and Food Applications
by
Calderaro, Antonella
,
Mandalari, Giuseppina
,
Neri, Giovanni
in
Anthocyanin
,
Anthocyanins - chemistry
,
Anthocyanins - pharmacology
2024
Over the last ten years, researchers’ efforts have aimed to replace the classic linear economy model with the circular economy model, favoring green chemical and industrial processes. From this point of view, biologically active molecules, coming from plants, flowers and biomass, are gaining considerable value. In this study, firstly we focus on the development of a green protocol to obtain the purification of anthocyanins from the flower of Callistemon citrinus, based on simulation and on response surface optimization methodology. After that, we utilize them to manufacture and add new properties to bioplastics belonging to class 3, based on modified polyvinyl alcohol (PVA) with increasing amounts from 0.10 to 1.00%. The new polymers are analyzed to monitor morphological changes, optical properties, mechanical properties and antioxidant and antimicrobial activities. Fourier transform infrared spectroscopy (FTIR) spectra of the new materials show the characteristic bands of the PVA alone and a modification of the band at around 1138 cm−1 and 1083 cm−1, showing an influence of the anthocyanins’ addition on the sequence with crystalline and amorphous structures of the starting materials, as also shown by the results of the mechanical tests. These last showed an increase in thickening (from 29.92 μm to approx. 37 μm) and hydrophobicity with the concomitant increase in the added anthocyanins (change in wettability with water from 14° to 31°), decreasing the poor water/moisture resistance of PVA that decreases its strength and limits its application in food packaging, which makes the new materials ideal candidates for biodegradable packaging to extend the shelf-life of food. The functionalization also determines an increase in the opacity, from 2.46 to 3.42 T%/mm, the acquisition of antioxidant activity against 2,2-diphenyl-1-picrylhdrazyl and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radicals and, in the ferric reducing power assay, the antimicrobial (bactericidal) activity against different Staphylococcus aureus strains at the maximum tested concentration (1.00% of anthocyanins). On the whole, functionalization with anthocyanins results in the acquisition of new properties, making it suitable for food packaging purposes, as highlighted by a food fresh-keeping test.
Journal Article