Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,106 result(s) for "Biodiversity Florida."
Sort by:
Atlas of Florida's natural heritage : biodiversity, landscapes, stewardship, and opportunities
The Atlas of Florida's natural heritage : biodiversity, landscapes, stewardship, and opportunities illustrates the natural heritage of Florida, its stewardship, and challenges for policy makers, planners, environmental advocates, residents, and visitors. Includes maps, diagrams, charts, photographs, and text.
Comparing species distribution models constructed with different subsets of environmental predictors
Aim To assess the usefulness of combining climate predictors with additional types of environmental predictors in species distribution models for range-restricted species, using common correlative species distribution modelling approaches. Location Florida, USA Methods We used five different algorithms to create distribution models for 14 vertebrate species, using seven different predictor sets: two with bioclimate predictors only, and five 'combination' models using bioclimate predictors plus 'additional' predictors from groups representing: human influence, land cover, extreme weather or noise (spatially random data).We use a linear mixed-model approach to analyse the effects of predictor set and algorithm on model accuracy, variable importance scores and spatial predictions. Results Regardless of modelling algorithm, no one predictor set produced significantly more accurate models than all others, though models including human influence predictors were the only ones with significantly higher accuracy than climate-only models. Climate predictors had consistently higher variable importance scores than additional predictors in combination models, though there was variation related to predictor type and algorithm. While spatial predictions varied moderately between predictor sets, discrepancies were significantly greater between modelling algorithms than between predictor sets. Furthermore, there were no differences in the level of agreement between binary 'presence–absence' maps and independent species range maps related to the predictor set used. Main conclusions Our results indicate that additional predictors have relatively minor effects on the accuracy of climate-based species distribution models and minor to moderate effects on spatial predictions. We suggest that implementing species distribution models with only climate predictors may provide an effective and efficient approach for initial assessments of environmental suitability.
Invasive Plants Have Scale-Dependent Effects on Diversity by Altering Species-Area Relationships
Although invasive plant species often reduce diversity, they rarely cause plant extinctions. We surveyed paired invaded and uninvaded plant communities from three biomes. We reconcile the discrepancy in diversity loss from invaders by showing that invaded communities have lower local richness but steeper species accumulation with area than that of uninvaded communities, leading to proportionately fewer species loss at broader spatial scales. We show that invaders drive scale-dependent biodiversity loss through strong neutral sampling effects on the number of individuals in a community. We also show that nonneutral species extirpations are due to a proportionately larger effect of invaders on common species, suggesting that rare species are buffered against extinction. Our study provides a synthetic perspective on the threat of invasions to biodiversity loss across spatial scales.
Shifting hotspots
Aim Preventing the spread of range‐shifting invasive species is a top priority for mitigating the impacts of climate change. Invasive plants become abundant and cause negative impacts in only a fraction of their introduced ranges, yet projections of invasion risk are almost exclusively derived from models built using all non‐native occurrences and neglect abundance information. Location Eastern USA. Methods We compiled abundance records for 144 invasive plant species from five major growth forms. We fit over 600 species distribution models based on occurrences of abundant plant populations, thus projecting which areas in the eastern United States (U.S.) will be most susceptible to invasion under current and +2°C climate change. Results We identified current invasive plant hotspots in the Great Lakes region, mid‐Atlantic region, and along the northeast coast of Florida and Georgia, each climatically suitable for abundant populations of over 30 invasive plant species. Under a +2°C climate change scenario, hotspots will shift an average of 213 km, predominantly towards the northeast U.S., where some areas are projected to become suitable for up to 21 new invasive plant species. Range shifting species could exacerbate impacts of up to 40 invasive species projected to sustain populations within existing hotspots. On the other hand, within the eastern U.S., 62% of species will experience decreased suitability for abundant populations with climate change. This trend is consistent across five plant growth forms. Main Conclusions We produced species range maps and state‐specific watch lists from these analyses, which can inform proactive regulation, monitoring, and management of invasive plants most likely to cause future ecological impacts. Additionally, areas we identify as becoming less suitable for abundant populations could be prioritized for restoration of climate‐adapted native species. This research provides a first comprehensive assessment of risk from abundant plant invasions across the eastern U.S.
Ocean Acidification and Human Health
The ocean provides resources key to human health and well-being, including food, oxygen, livelihoods, blue spaces, and medicines. The global threat to these resources posed by accelerating ocean acidification is becoming increasingly evident as the world’s oceans absorb carbon dioxide emissions. While ocean acidification was initially perceived as a threat only to the marine realm, here we argue that it is also an emerging human health issue. Specifically, we explore how ocean acidification affects the quantity and quality of resources key to human health and well-being in the context of: (1) malnutrition and poisoning, (2) respiratory issues, (3) mental health impacts, and (4) development of medical resources. We explore mitigation and adaptation management strategies that can be implemented to strengthen the capacity of acidifying oceans to continue providing human health benefits. Importantly, we emphasize that the cost of such actions will be dependent upon the socioeconomic context; specifically, costs will likely be greater for socioeconomically disadvantaged populations, exacerbating the current inequitable distribution of environmental and human health challenges. Given the scale of ocean acidification impacts on human health and well-being, recognizing and researching these complexities may allow the adaptation of management such that not only are the harms to human health reduced but the benefits enhanced.
Fire severity effects on the herpetofaunal diversity of the Florida scrub, a biodiversity hotspot
Fires, either natural or prescribed, are essential for conserving pyrogenic ecosystems; however, climate change is predicted to increase fire severity possibly causing negative impacts on native species diversity. Reptile and amphibian species may be particularly at risk given they are ectothermic species. The objective of this study was to better understand the impacts of fire severity on the herpetofaunal communities of the Florida scrub. The Florida scrub is an imperiled ecosystem that sustains over two-thirds of listed reptiles and amphibians in Florida. We conducted a field-based study to test taxonomic and functional diversity differences across four varying fire severities: unburned, low, medium and high. We also examined the association between herpetofaunal diversity and microhabitat variables across fire severities. We recorded 549 individuals, representing 23 reptile and amphibian species. The herpetofaunal community was not significantly different between the varying fire severities; however, a congruent trend occurred with the greatest diversity occurring at the intermediate fire severity plots. In addition, we showed leaf litter was significantly associated with species diversity. Interesting, the endangered sand skink, Plestiodon reynoldsi, was not recorded at the high fire severity plots, which could have implications on fire management practices of this federally threatened species. In this study, we demonstrated fire severity does not have a direct but instead an indirect effect on the native herpetofaunal species diversity in the Florida scrub. Thus, increasing fire severity consumption of leaf litter has the potential to detrimentally impact the Florida scrub herpetofaunal diversity. This study highlights the importance of fine-scale microhabitat variables, such as leaf litter, as an important indicator for biodiversity conservation.
Modelling the biodiversity enhancement value of seagrass beds
Aim Seagrass beds are declining globally and are increasingly vulnerable to sea level rise (SLR), which could have consequences for the rich biodiversity they support. Spatial variation in the role of seagrass beds in enhancing biodiversity is poorly resolved, limiting our ability to set priorities for conservation and restoration. We aimed to model the biodiversity enhancement value of seagrass beds. Location Florida Gulf Coast, USA. Methods We used generalized additive mixed models (GAMMs) to describe the distribution, total cover and species composition of seagrass beds and to estimate their effects on spatial patterns of faunal species richness under three scenarios. Specifically, we: (a) quantified the biodiversity enhancement value of current seagrass beds, (b) inferred the biodiversity value of potential restoration areas and (c) projected potential changes in the distribution and biodiversity enhancement value of seagrass beds due to SLR using low (+0.50 m) and high (+1.0 m) SLR forecasts for 2100. Results Current seagrass beds supported 43%–64% more species than unvegetated habitats, even when accounting for spatial variability in predicted faunal richness due to other environmental, seascape, temporal and geographic factors. Seagrass restoration in potential habitats would also increase biodiversity in the near‐term (i.e., 43%–45% above unvegetated levels). However, model projections indicate that SLR could result in significant losses of current seagrass beds and potential restoration areas, causing contracted distributions and lower seagrass cover. Overall, these changes could result in significant reductions in the enhancement value provided by seagrasses. Although, there could also be many suitable locations for seagrasses by 2100, with some having either comparable or potentially increased enhancement value. Main conclusions Our findings highlight the importance of considering spatial variation in biodiversity benefits when planning for seagrass conservation and restoration and when managing the impacts of SLR.
Drivers of plant functional group richness and beta diversity in fire-dependent pine savannas
Aim To assess the drivers of plant functional group richness and beta diversity in fire‐maintained North American Coastal Plain (NACP) savannas. Location The southern portion of the NACP, a global biodiversity hotspot. This region is characterized by fire‐dependent pine savanna fragments that are isolated within a matrix of agriculture, urban development, non‐pyrogenic plant communities and plantation forestry. Methods We used nested quadrats to sample plant species on 30 fire‐maintained savanna preserves in Florida and Georgia, USA. We analysed between‐site Sørenson dissimilarity, a measure of beta diversity, using NMDS and PerMANOVA. We measured nestedness using NODF, and we used Betapart to partition Sørenson dissimilarity into nestedness and turnover components. We used linear and generalized linear mixed models to explore drivers of functional group richness and composition, including fire regime (return interval, number of fires, time since fire and seasonality), vegetation structure (herbaceous cover, woody cover and tree density) and spatial factors (surrounding landscape and geographic distance). Results We found turnover‐dominated beta‐diversity patterns in all functional groups. Turnover was explained partly by spatial and environmental gradients, but roughly half of the turnover between sites was unexplained. Species richness was higher on sites where fire and fire surrogates had been used longer and more consistently, and these effects were partly independent of current vegetation structure. Fire regimes containing more growing season fire and more diversity of burn seasons promoted higher species richness. Relationships between small‐scale and large‐scale species richness varied by soil type and functional group. Main conclusions Fire‐maintained savannas in the southeastern NACP vary greatly in their plant functional group richness, but high beta diversity resulting primarily from species turnover suggests that even species‐poor sites can harbour less‐common members of the regional plant metacommunity. Prescribed fire regimes that include growing season fire as well as a diversity of burn seasons may best promote species and functional group richness.
Life history strategies differentiate established from failed non-native freshwater fish in peninsular Florida
Aim Non‐native fishes threaten native biodiversity worldwide. Life history traits have been used to predict the risk of establishment for non‐native fish in several regions of the world and parts of the United States, but not yet for Florida despite the elevated risk of establishment in the state due to many invasion pathways and favourable climate. Our goal was to identify which life history traits may be useful for predicting which non‐native freshwater fishes might successfully establish populations in Peninsular Florida. Location Peninsular Florida, USA. Methods We conducted a factor analysis to evaluate 21 life history traits for 125 fishes in three different groups: native fishes, non‐native fish species currently established in Florida and introduced fishes that failed to establish in Florida. We also modelled overall life history traits of those fishes according to the triangular model by Winemiller and Rose to compare overall strategies among the three different groups and tested for significant trait differences between failed and established fishes. Results Our analyses of life history traits showed that successful species have a high investment in their offspring and tend to be larger bodied. Parental care was particularly important, with only one of the established species lacking parental care. Triangular life history model results showed that most successfully established species such as those in the family Cichlidae are equilibrium strategists with a high degree of parental care, low‐to‐intermediate fecundity and a larger maturation size. Main conclusions Understanding the life history strategies and traits that aid in the prediction of non‐native fish invasiveness is key for effective risk assessment and management. Further analysis of these traits as predictors of establishment and invasion success is needed, and regional risk assessments of non‐native fishes will benefit from inclusion of several traits highlighted in this study.
Using genetics to inform restoration and predict resilience in declining populations of a keystone marine sponge
Genetic tools can have a key role in informing conservation management of declining populations. Genetic diversity is an important determinant of population fitness and resilience, and can require careful management to ensure sufficient variation is present. In addition, population genetics data reveal patterns of connectivity and gene flow between locations, enabling mangers to predict recovery and resilience, identify areas of local adaptation, and generate restoration plans. Here, we demonstrate a conservation genetics approach to inform restoration and management of the loggerhead sponge (Spheciospongia vesparium) in the Florida Keys, USA. This species is a dominant, habitat-forming component of marine ecosystems in the Caribbean region, but in Florida has suffered numerous mass mortality events. We developed microsatellite markers and used them to genotype sponges from 14 locations in Florida and a site each in The Bahamas, Belize and Barbuda. We found that genetic diversity levels were similar across all sites, but inbreeding and bottleneck signatures were present in Florida. Populations are highly structured at the regional scale, whilst within Florida connectivity is present in a weak isolation by distance pattern, coupled with chaotic genetic patchiness. Evidence of a weak barrier to gene flow was found in Florida among sites situated on opposite sides of the islands in the Middle Keys. Loggerhead sponge populations in Florida are vulnerable in the face of mass mortalities due to low connectivity with other areas in the region, as well as distance-limited and unpredictable local connectivity patterns. However, our discovery of Florida’s high genetic diversity increases hope for resilience to future perturbations. These results provide valuable insight for sponge restoration practice in Florida.