Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,903 result(s) for "Biological computing"
Sort by:
An Artificial Immune System Approach to Automated Program Verification: Towards a Theory of Undecidability in Biological Computing
We propose an immune system inspired Artificial Immune System algorithm for the purposes of automated program verification. It is proposed to use this Artificial Immune System algorithm for a specific automated program verification task: that of predicting shape of program invariants. It is shown that the algorithm correctly predicts program invariant shape for a variety of benchmarked programs. Program invariants encapsulate the computability of a particular program, e.g. whether it performs a particular function correctly and whether it terminates or not. This work also lays the foundation for applying concepts of theoretical incomputability and undecidability to biological systems like the immune system that perform robust computation to eliminate pathogens
Quantum computing at the frontiers of biological sciences
Computing plays a critical role in the biological sciences but faces increasing challenges of scale and complexity. Quantum computing, a computational paradigm exploiting the unique properties of quantum mechanical analogs of classical bits, seeks to address many of these challenges. We discuss the potential for quantum computing to aid in the merging of insights across different areas of biological sciences.
Biological plausibility and stochasticity in scalable VO2 active memristor neurons
Neuromorphic networks of artificial neurons and synapses can solve computationally hard problems with energy efficiencies unattainable for von Neumann architectures. For image processing, silicon neuromorphic processors outperform graphic processing units in energy efficiency by a large margin, but deliver much lower chip-scale throughput. The performance-efficiency dilemma for silicon processors may not be overcome by Moore’s law scaling of silicon transistors. Scalable and biomimetic active memristor neurons and passive memristor synapses form a self-sufficient basis for a transistorless neural network. However, previous demonstrations of memristor neurons only showed simple integrate-and-fire behaviors and did not reveal the rich dynamics and computational complexity of biological neurons. Here we report that neurons built with nanoscale vanadium dioxide active memristors possess all three classes of excitability and most of the known biological neuronal dynamics, and are intrinsically stochastic. With the favorable size and power scaling, there is a path toward an all-memristor neuromorphic cortical computer. The neuromorphic computing based on complementary metal-oxide-semiconductor transistors holds promise for artificial intelligence, but it suffers from the trade-off between scalability and biological fidelity. Yi et al. emulate 23 types of biological neuronal behaviors using scalable VO 2 active memristors.
Spatial components of molecular tissue biology
Methods for profiling RNA and protein expression in a spatially resolved manner are rapidly evolving, making it possible to comprehensively characterize cells and tissues in health and disease. To maximize the biological insights obtained using these techniques, it is critical to both clearly articulate the key biological questions in spatial analysis of tissues and develop the requisite computational tools to address them. Developers of analytical tools need to decide on the intrinsic molecular features of each cell that need to be considered, and how cell shape and morphological features are incorporated into the analysis. Also, optimal ways to compare different tissue samples at various length scales are still being sought. Grouping these biological problems and related computational algorithms into classes across length scales, thus characterizing common issues that need to be addressed, will facilitate further progress in spatial transcriptomics and proteomics. Regev, Theis and colleagues outline the challenges and concepts of the analysis of spatial transcriptomics data.
Quantum Computing in the Next-Generation Computational Biology Landscape: From Protein Folding to Molecular Dynamics
Modern biological science is trying to solve the fundamental complex problems of molecular biology, which include protein folding, drug discovery, simulation of macromolecular structure, genome assembly, and many more. Currently, quantum computing (QC), a rapidly emerging technology exploiting quantum mechanical phenomena, has developed to address current significant physical, chemical, biological issues, and complex questions. The present review discusses quantum computing technology and its status in solving molecular biology problems, especially in the next-generation computational biology scenario. First, the article explained the basic concept of quantum computing, the functioning of quantum systems where information is stored as qubits, and data storage capacity using quantum gates. Second, the review discussed quantum computing components, such as quantum hardware, quantum processors, and quantum annealing. At the same time, article also discussed quantum algorithms, such as the grover search algorithm and discrete and factorization algorithms. Furthermore, the article discussed the different applications of quantum computing to understand the next-generation biological problems, such as simulation and modeling of biological macromolecules, computational biology problems, data analysis in bioinformatics, protein folding, molecular biology problems, modeling of gene regulatory networks, drug discovery and development, mechano-biology, and RNA folding. Finally, the article represented different probable prospects of quantum computing in molecular biology.
A universal biomolecular integral feedback controller for robust perfect adaptation
Homeostasis is a recurring theme in biology that ensures that regulated variables robustly—and in some systems, completely—adapt to environmental perturbations. This robust perfect adaptation feature is achieved in natural circuits by using integral control, a negative feedback strategy that performs mathematical integration to achieve structurally robust regulation 1 , 2 . Despite its benefits, the synthetic realization of integral feedback in living cells has remained elusive owing to the complexity of the required biological computations. Here we prove mathematically that there is a single fundamental biomolecular controller topology 3 that realizes integral feedback and achieves robust perfect adaptation in arbitrary intracellular networks with noisy dynamics. This adaptation property is guaranteed both for the population-average and for the time-average of single cells. On the basis of this concept, we genetically engineer a synthetic integral feedback controller in living cells 4 and demonstrate its tunability and adaptation properties. A growth-rate control application in Escherichia coli shows the intrinsic capacity of our integral controller to deliver robustness and highlights its potential use as a versatile controller for regulation of biological variables in uncertain networks. Our results provide conceptual and practical tools in the area of cybergenetics 3 , 5 , for engineering synthetic controllers that steer the dynamics of living systems 3 – 9 . A synthetic gene circuit implementing an integral feedback topology is shown to achieve robust perfect adaptation in living cells--mathematical analysis proves this topology is necessary for adaptation in networks with noisy dynamics.
A framework for designing delivery systems
The delivery of medical agents to a specific diseased tissue or cell is critical for diagnosing and treating patients. Nanomaterials are promising vehicles to transport agents that include drugs, contrast agents, immunotherapies and gene editors. They can be engineered to have different physical and chemical properties that influence their interactions with their biological environments and delivery destinations. In this Review Article, we discuss nanoparticle delivery systems and how the biology of disease should inform their design. We propose developing a framework for building optimal delivery systems that uses nanoparticle–biological interaction data and computational analyses to guide future nanomaterial designs and delivery strategies.This Review proposes a framework for designing delivery systems to target diseased tissues based on the biology of the target, the journey and computational algorithms.
AlphaFold3 takes a step toward decoding molecular behavior and biological computation
AlphaFold 3 represents a breakthrough in predicting the 3D structures of complexes directly from their sequences, offering insights into biomolecular interactions. Extending predictions to molecular behavior and function requires a shift from viewing biomolecules as static 3D structures to dynamic conformational ensembles.
Bioinspired bio-voltage memristors
Memristive devices are promising candidates to emulate biological computing. However, the typical switching voltages (0.2-2 V) in previously described devices are much higher than the amplitude in biological counterparts. Here we demonstrate a type of diffusive memristor, fabricated from the protein nanowires harvested from the bacterium Geobacter sulfurreducens , that functions at the biological voltages of 40-100 mV. Memristive function at biological voltages is possible because the protein nanowires catalyze metallization. Artificial neurons built from these memristors not only function at biological action potentials (e.g., 100 mV, 1 ms) but also exhibit temporal integration close to that in biological neurons. The potential of using the memristor to directly process biosensing signals is also demonstrated. Designing energy efficient systems capable to directly process signals at biological voltages remains a challenge. Here, the authors propose a bio-compatible memristor device based on protein-nanowire dielectric, harvested from the bacterium Geobactor sulfurreducens, working at biological voltages.
Network dynamics of social influence in the wisdom of crowds
A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent collective judgments. Since Galton’s discovery of the “wisdom of crowds” [Galton F (1907) Nature 75:450–451], theories of collective intelligence have suggested that the accuracy of group judgments requires individuals to be either independent, with uncorrelated beliefs, or diverse, with negatively correlated beliefs [Page S (2008) The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies]. Previous experimental studies have supported this view by arguing that social influence undermines the wisdom of crowds. These results showed that individuals’ estimates became more similar when subjects observed each other’s beliefs, thereby reducing diversity without a corresponding increase in group accuracy [Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) Proc Natl Acad Sci USA 108:9020–9025]. By contrast, we show general network conditions under which social influence improves the accuracy of group estimates, even as individual beliefs become more similar. We present theoretical predictions and experimental results showing that, in decentralized communication networks, group estimates become reliably more accurate as a result of information exchange. We further show that the dynamics of group accuracy change with network structure. In centralized networks, where the influence of central individuals dominates the collective estimation process, group estimates become more likely to increase in error.