Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Item TypeItem Type
-
YearFrom:-To:
-
More FiltersMore FiltersIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
9,672
result(s) for
"Biomedical engineering Computer simulation."
Sort by:
Biosimulation : simulation of living systems
by
Beard, Daniel A., 1971-
in
Biophysics Computer simulation.
,
Biophysics Simulation methods.
,
Biomedical engineering Computer simulation.
2012
\"This practical guide to biosimulation provides the hands-on experience needed to devise, design and analyze simulations of biophysical processes for applications in biological and biomedical sciences. Through real-world case studies and worked examples, students will develop and apply basic operations through to advanced concepts, covering a wide range of biophysical topics including chemical kinetics and thermodynamics, transport phenomena, and cellular electrophysiology. Each chapter is built around case studies in a given application area, with simulations of real biological systems developed to analyze and interpret data. Open-ended project-based exercises are provided at the end of each chapter, and with all data and computer codes available online (www.cambridge.org/biosim) students can quickly and easily run, manipulate, explore and expand on the examples inside. This hands-on guide is ideal for use on senior undergraduate/graduate courses and also as a self-study guide for anyone who needs to develop computational models of biological systems\"-- Provided by publisher.
Computer modeling in bioengineering : theoretical background, examples and software
by
Kojić, Miloš
in
Biomedical Engineering
,
Biomedical engineering -- Computer simulation
,
Biomedical Technology
2008
Bioengineering is a broad-based engineering discipline that applies engineering principles and design to challenges in human health and medicine, dealing with bio-molecular and molecular processes, product design, sustainability and analysis of biological systems. Applications that benefit from bioengineering include medical devices, diagnostic equipment and biocompatible materials, amongst others. Computer Modeling in Bioengineering offers a comprehensive reference for a large number of bioengineering topics, presenting important computer modeling problems and solutions for research and medical practice. Starting with basic theory and fundamentals, the book progresses to more advanced methods and applications, allowing the reader to become familiar with different topics to the desired extent. It includes unique and original topics alongside classical computational modeling methods, and each application is structured to explain the physiological background, phenomena that are to be modeled, the computational methods used in the model, and solutions of typical cases. The accompanying software contains over 80 examples, enabling the reader to study a topic using the theory and examples, then run the software to solve the same, or similar examples, varying the model parameters within a given range in order to investigate the problem at greater depth. Tutorials also guide the user in further exploring the modeled problem; these features promote easier learning and will help lecturers with presentations. Computer Modeling in Bioengineering includes computational methods for modelling bones, tissues, muscles, cardiovascular components, cartilage, cells and cancer nanotechnology as well as many other applications. It bridges the gap between engineering, biology and medicine, and will appeal not only to bioengineering students, lecturers and researchers, but also medical students and clinical researchers.
Differential equation analysis in biomedical science and engineering : partial differential equation applications with R
by
Schiesser, William E
in
Biomedical engineering
,
Biomedical engineering -- Computer simulation
,
Chemotaxis
2014
Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the computed numerical solutions and is a valuable resource for dealing with a broad class of linear and nonlinear partial differential equations. The author's primary focus is on models expressed as systems of PDEs, which generally result from including spatial effects so that the PDE dependent variables are functions of both space and time, unlike ordinary differential equation (ODE) systems that pertain to time only. As such, the book emphasizes details of the numerical algorithms and how the solutions were computed. Featuring computer-based mathematical models for solving real-world problems in the biological and biomedical sciences and engineering, the book also includes: R routines to facilitate the immediate use of computation for solving differential equation problems without having to first learn the basic concepts of numerical analysis and programming for PDEs Models as systems of PDEs and associated initial and boundary conditions with explanations of the associated chemistry, physics, biology, and physiology Numerical solutions of the presented model equations with a discussion of the important features of the solutions Aspects of general PDE computation through various biomedical science and engineering applications Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R is an excellent reference for researchers, scientists, clinicians, medical researchers, engineers, statisticians, epidemiologists, and pharmacokineticists who are interested in both clinical applications and interpretation of experimental data with mathematical models in order to efficiently solve the associated differential equations. The book is also useful as a textbook for graduate-level courses in mathematics, biomedical science and engineering, biology, biophysics, biochemistry, medicine, and engineering.
SciPy 1.0: fundamental algorithms for scientific computing in Python
2020
SciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories and millions of downloads per year. In this work, we provide an overview of the capabilities and development practices of SciPy 1.0 and highlight some recent technical developments.
This Perspective describes the development and capabilities of SciPy 1.0, an open source scientific computing library for the Python programming language.
Journal Article
Organ-on-a-chip: recent breakthroughs and future prospects
2020
The organ-on-a-chip (OOAC) is in the list of top 10 emerging technologies and refers to a physiological organ biomimetic system built on a microfluidic chip. Through a combination of cell biology, engineering, and biomaterial technology, the microenvironment of the chip simulates that of the organ in terms of tissue interfaces and mechanical stimulation. This reflects the structural and functional characteristics of human tissue and can predict response to an array of stimuli including drug responses and environmental effects. OOAC has broad applications in precision medicine and biological defense strategies. Here, we introduce the concepts of OOAC and review its application to the construction of physiological models, drug development, and toxicology from the perspective of different organs. We further discuss existing challenges and provide future perspectives for its application.
Journal Article
Fluid–Structure Interaction Models of Bioprosthetic Heart Valve Dynamics in an Experimental Pulse Duplicator
by
Rygg, Alex D
,
Scotten, Lawrence N
,
Kolahdouz, Ebrahim M
in
Aorta
,
Applied mathematics
,
Biomedical engineering
2020
Computer modeling and simulation is a powerful tool for assessing the performance of medical devices such as bioprosthetic heart valves (BHVs) that promises to accelerate device design and regulation. This study describes work to develop dynamic computer models of BHVs in the aortic test section of an experimental pulse-duplicator platform that is used in academia, industry, and regulatory agencies to assess BHV performance. These computational models are based on a hyperelastic finite element extension of the immersed boundary method for fluid–structure interaction (FSI). We focus on porcine tissue and bovine pericardial BHVs, which are commonly used in surgical valve replacement. We compare our numerical simulations to experimental data from two similar pulse duplicators, including a commercial ViVitro system and a custom platform related to the ViVitro pulse duplicator. Excellent agreement is demonstrated between the computational and experimental results for bulk flow rates, pressures, valve open areas, and the timing of valve opening and closure in conditions commonly used to assess BHV performance. In addition, reasonable agreement is demonstrated for quantitative measures of leaflet kinematics under these same conditions. This work represents a step towards the experimental validation of this FSI modeling platform for evaluating BHVs.
Journal Article
Simulation-Informed Power Budget Estimate of a Fully-Implantable Brain–Computer Interface
by
Serrano-Amenos, Claudia
,
Heydari, Payam
,
Hu, Frank
in
Biochips
,
Biomedical engineering
,
Brain
2024
This study aims to estimate the maximum power consumption that guarantees a thermally safe operation for a titanium-enclosed chest wall unit (CWU) subcutaneously implanted in the pre-pectoral area. This unit is a central piece of an envisioned fully-implantable bi-directional brain–computer interface (BD-BCI). To this end, we created a thermal simulation model using the finite element method implemented in COMSOL. We also performed a sensitivity analysis to ensure that our predictions were robust against the natural variation of physiological and environmental parameters. Based on this analysis, we predict that the CWU can consume between 378 and 538 mW of power without raising the surrounding tissue’s temperature above the thermal safety threshold of 2 ∘C. This power budget should be sufficient to power all of the CWU’s basic functionalities, which include training the decoder, online decoding, wireless data transmission, and cortical stimulation. This power budget assessment provides an important specification for the design of a CWU—an integral part of a fully-implantable BD-BCI system.
Journal Article
A real-time system for biomechanical analysis of human movement and muscle function
by
Even-Zohar, Oshri
,
Steenbrink, Frans
,
Geijtenbeek, Thomas
in
Adult
,
Biomechanical Phenomena - physiology
,
Biomechanics
2013
Mechanical analysis of movement plays an important role in clinical management of neurological and orthopedic conditions. There has been increasing interest in performing movement analysis in real-time, to provide immediate feedback to both therapist and patient. However, such work to date has been limited to single-joint kinematics and kinetics. Here we present a software system, named human body model (HBM), to compute joint kinematics and kinetics for a full body model with 44 degrees of freedom, in real-time, and to estimate length changes and forces in 300 muscle elements. HBM was used to analyze lower extremity function during gait in 12 able-bodied subjects. Processing speed exceeded 120 samples per second on standard PC hardware. Joint angles and moments were consistent within the group, and consistent with other studies in the literature. Estimated muscle force patterns were consistent among subjects and agreed qualitatively with electromyography, to the extent that can be expected from a biomechanical model. The real-time analysis was integrated into the D-Flow system for development of custom real-time feedback applications and into the gait real-time analysis interactive lab system for gait analysis and gait retraining.
Journal Article
Prediction of lower limb joint angles and moments during gait using artificial neural networks
by
Koeppe Arnd
,
Potthast, Wolfgang
,
Witter, Tom
in
Acceleration
,
Artificial intelligence
,
Artificial neural networks
2020
In recent years, gait analysis outside the laboratory attracts more and more attention in clinical applications as well as in life sciences. Wearable sensors such as inertial sensors show high potential in these applications. Unfortunately, they can only measure kinematic motions patterns indirectly and the outcome is currently jeopardized by measurement discrepancies compared with the gold standard of optical motion tracking. The aim of this study was to overcome the limitation of measurement discrepancies and the missing information on kinetic motion parameters using a machine learning application based on artificial neural networks. For this purpose, inertial sensor data—linear acceleration and angular rate—was simulated from a database of optical motion tracking data and used as input for a feedforward and long short-term memory neural network to predict the joint angles and moments of the lower limbs during gait. Both networks achieved mean correlation coefficients higher than 0.80 in the minor motion planes, and correlation coefficients higher than 0.98 in the sagittal plane. These results encourage further applications of artificial intelligence to support gait analysis.
Journal Article
Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation
by
Song, Seungmoon
,
Hicks, Jennifer
,
Peng, Xue Bin
in
Biomechanical Phenomena
,
Biomechanics
,
Biomedical and Life Sciences
2021
Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This “Learn to Move” competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research
Journal Article