Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
3,828
result(s) for
"Biomedical materials Biodegradation."
Sort by:
Environmental degradation of advanced and traditional engineering materials
\"From metals and polymers to ceramics, natural materials, and composites, this book covers the environmental impacts on a broad range of materials used for the engineering of infrastructure, buildings, machines, and components all of which experience some form of degradation. The text discusses fundamental degradation processes and presents examples of degradation under various environmental conditions. It gives the fundamental principles for each class of material, followed by detailed characteristics of degradation for specific alloys of compositions, guidelines on how to protect against degradation, and a description of testing procedures\"-- Provided by publisher.
MXene in the lens of biomedical engineering: synthesis, applications and future outlook
by
Ma, Nyuk Ling
,
Lim, Gim Pao
,
Tee, Kian Sek
in
Acids
,
Animals
,
Antiinfectives and antibacterials
2021
MXene is a recently emerged multifaceted two-dimensional (2D) material that is made up of surface-modified carbide, providing its flexibility and variable composition. They consist of layers of early transition metals (M), interleaved with
n
layers of carbon or nitrogen (denoted as X) and terminated with surface functional groups (denoted as T
x
/T
z
) with a general formula of M
n+1
X
n
T
x
, where
n
= 1–3. In general, MXenes possess an exclusive combination of properties, which include, high electrical conductivity, good mechanical stability, and excellent optical properties. MXenes also exhibit good biological properties, with high surface area for drug loading/delivery, good hydrophilicity for biocompatibility, and other electronic-related properties for computed tomography (CT) scans and magnetic resonance imaging (MRI). Due to the attractive physicochemical and biocompatibility properties, the novel 2D materials have enticed an uprising research interest for application in biomedicine and biotechnology. Although some potential applications of MXenes in biomedicine have been explored recently, the types of MXene applied in the perspective of biomedical engineering and biomedicine are limited to a few, titanium carbide and tantalum carbide families of MXenes. This review paper aims to provide an overview of the structural organization of MXenes, different top-down and bottom-up approaches for synthesis of MXenes, whether they are fluorine-based or fluorine-free etching methods to produce biocompatible MXenes. MXenes can be further modified to enhance the biodegradability and reduce the cytotoxicity of the material for biosensing, cancer theranostics, drug delivery and bio-imaging applications. The antimicrobial activity of MXene and the mechanism of MXenes in damaging the cell membrane were also discussed. Some challenges for in vivo applications, pitfalls, and future outlooks for the deployment of MXene in biomedical devices were demystified. Overall, this review puts into perspective the current advancements and prospects of MXenes in realizing this 2D nanomaterial as a versatile biological tool.
Journal Article
Composites from renewable and sustainable resources: Challenges and innovations
by
Pin, Jean-Mathieu
,
Misra, Manjusri
,
Mohanty, Amar K.
in
Automobile industry
,
Automotive engineering
,
Automotive parts
2018
Interest in constructing composite materials from biosourced, recycled materials; waste resources; and their combinations is growing. Biocomposites have attracted the attention of automakers for the design of lightweight parts. Hybrid biocomposites made of petrochemical-based and bioresourced materials have led to technological advances in manufacturing. Greener biocomposites from plant-derived fiber and crop-derived plastics with higher biobased content are continuously being developed. Biodegradable composites have shown potential for major uses in sustainable packaging. Recycled plastic materials originally destined for landfills can be redirected and repurposed for blending in composite applications, thus leading to reduced dependence on virgin petro-based materials. Studies on compatibility of recycled and waste materials with other components in composite structure for improved interface and better mechanical performance pose major scientific challenges. This research holds the promise of advancing a key global sustainability goal.
Journal Article
Properties and Applications of PDMS for Biomedical Engineering: A Review
by
Ribeiro, João
,
Souza, Andrews
,
Minas, Graça
in
Biocompatibility
,
Biodegradation
,
Biomedical engineering
2021
Polydimethylsiloxane (PDMS) is an elastomer with excellent optical, electrical and mechanical properties, which makes it well-suited for several engineering applications. Due to its biocompatibility, PDMS is widely used for biomedical purposes. This widespread use has also led to the massification of the soft-lithography technique, introduced for facilitating the rapid prototyping of micro and nanostructures using elastomeric materials, most notably PDMS. This technique has allowed advances in microfluidic, electronic and biomedical fields. In this review, an overview of the properties of PDMS and some of its commonly used treatments, aiming at the suitability to those fields’ needs, are presented. Applications such as microchips in the biomedical field, replication of cardiovascular flow and medical implants are also reviewed.
Journal Article
Applications of bacterial cellulose and its composites in biomedicine
by
Kumbhar, J. V
,
Paknikar, K. M
,
Rajwade, J. M
in
Bacteria
,
Biocompatibility
,
Biocompatible Materials - chemistry
2015
Bacterial cellulose produced by few but specific microbial genera is an extremely pure natural exopolysaccharide. Besides providing adhesive properties and a competitive advantage to the cellulose over-producer, bacterial cellulose confers UV protection, ensures maintenance of an aerobic environment, retains moisture, protects against heavy metal stress, etc. This unique nanostructured matrix is being widely explored for various medical and nonmedical applications. It can be produced in various shapes and forms because of which it finds varied uses in biomedicine. The attributes of bacterial cellulose such as biocompatibility, haemocompatibility, mechanical strength, microporosity and biodegradability with its unique surface chemistry make it ideally suited for a plethora of biomedical applications. This review highlights these qualities of bacterial cellulose in detail with emphasis on reports that prove its utility in biomedicine. It also gives an in-depth account of various biomedical applications ranging from implants and scaffolds for tissue engineering, carriers for drug delivery, wound-dressing materials, etc. that are reported until date. Besides, perspectives on limitations of commercialisation of bacterial cellulose have been presented. This review is also an update on the variety of low-cost substrates used for production of bacterial cellulose and its nonmedical applications and includes patents and commercial products based on bacterial cellulose.
Journal Article
Current development of biodegradable polymeric materials for biomedical applications
by
Ting, Kang
,
Li, Chenshuang
,
Murphy, Maxwell
in
Animals
,
Biocompatible Materials - chemistry
,
Biocompatible Materials - metabolism
2018
In the last half-century, the development of biodegradable polymeric materials for biomedical applications has advanced significantly. Biodegradable polymeric materials are favored in the development of therapeutic devices, including temporary implants and three-dimensional scaffolds for tissue engineering. Further advancements have occurred in the utilization of biodegradable polymeric materials for pharmacological applications such as delivery vehicles for controlled/sustained drug release. These applications require particular physicochemical, biological, and degradation properties of the materials to deliver effective therapy. As a result, a wide range of natural or synthetic polymers able to undergo hydrolytic or enzymatic degradation is being studied for biomedical applications. This review outlines the current development of biodegradable natural and synthetic polymeric materials for various biomedical applications, including tissue engineering, temporary implants, wound healing, and drug delivery.
Journal Article
A review on the recent applications of synthetic biopolymers in 3D printing for biomedical applications
2023
3D printing technology is an emerging method that gained extensive attention from researchers worldwide, especially in the health and medical fields. Biopolymers are an emerging class of materials offering excellent properties and flexibility for additive manufacturing. Biopolymers are widely used in biomedical applications in biosensing, immunotherapy, drug delivery, tissue engineering and regeneration, implants, and medical devices. Various biodegradable and non-biodegradable polymeric materials are considered as bio-ink for 3d printing. Here, we offer an extensive literature review on the current applications of synthetic biopolymers in the field of 3D printing. A trend in the publication of biopolymers in the last 10 years are focused on the review by analyzing more than 100 publications. Their application and classification based on biodegradability are discussed. The various studies, along with their practical applications, are elaborated in the subsequent sections for polyethylene, polypropylene, polycaprolactone, polylactide, etc. for biomedical applications. The disadvantages of various biopolymers are discussed, and future perspectives like combating biocompatibility problems using 3D printed biomaterials to build compatible prosthetics are also discussed and the potential application of using resin with the combination of biopolymers to build customized implants, personalized drug delivery systems and organ on a chip technologies are expected to open a new set of chances for the development of healthcare and regenerative medicine in the future.
Journal Article
Fully implantable and bioresorbable cardiac pacemakers without leads or batteries
by
Li, Gang
,
Yin, Rose T.
,
Banks, Anthony
in
631/1647/1453/1448
,
631/443/592/75/29
,
631/61/54/993
2021
Temporary cardiac pacemakers used in periods of need during surgical recovery involve percutaneous leads and externalized hardware that carry risks of infection, constrain patient mobility and may damage the heart during lead removal. Here we report a leadless, battery-free, fully implantable cardiac pacemaker for postoperative control of cardiac rate and rhythm that undergoes complete dissolution and clearance by natural biological processes after a defined operating timeframe. We show that these devices provide effective pacing of hearts of various sizes in mouse, rat, rabbit, canine and human cardiac models, with tailored geometries and operation timescales, powered by wireless energy transfer. This approach overcomes key disadvantages of traditional temporary pacing devices and may serve as the basis for the next generation of postoperative temporary pacing technology.
A biodegradable pacemaker without external leads improves the safety of temporary cardiac pacing.
Journal Article
Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications
2021
A fine-tuned combination of scaffolds, biomolecules, and mesenchymal stem cells (MSCs) is used in tissue engineering to restore the function of injured bone tissue and overcome the complications associated with its regeneration. For two decades, biomaterials have attracted much interest in mimicking the native extracellular matrix of bone tissue. To this aim, several approaches based on biomaterials combined with MSCs have been amply investigated. Recently, hydroxyapatite (HA) nanoparticles have been incorporated with polycaprolactone (PCL) matrix as a suitable substitute for bone tissue engineering applications. This review article aims at providing a brief overview on PCL/HA composite scaffold fabrication techniques such as sol–gel, rapid prototyping, electro-spinning, particulate leaching, thermally induced phase separation, and freeze-drying, as suitable approaches for tailoring morphological, mechanical, and biodegradability properties of the scaffolds for bone tissues. Among these methods, the 3D plotting method shows improvements in pore architecture (pore size of ≥600 µm and porosity of 92%), mechanical properties (higher than 18.38 MPa), biodegradability, and good bioactivity in bone tissue regeneration.
Journal Article
The ascension of nanosponges as a drug delivery carrier: preparation, characterization, and applications
2022
Nanosponges are nanosized drug carriers with a three-dimensional structure created by crosslinking polymers. They have the advantage of being able to hold a wide range of drugs of various sizes. Nanosponges come in a variety of shapes and sizes. They are distinguished by the research method used, the type of polymer used, and the type of drug they may contain. Nanosponges are superior to other delivery systems because they can provide a controlled drug release pattern with targeted drug delivery. The period of action, as well as the drug’s residence time, may be regulated. Since it is made of biodegradable materials, it has a low toxicity and is safe to use. The efficiency of drug encapsulation is determined by the size of the drug molecule and the amount of void space available. Cancer, enzyme and biocatalyst carrier, oxygen delivery, solubility enhancement, enzyme immobilization, and poison absorbent are some of the applications for nanosponges. The method of preparation, characterization, factors affecting nanosponge development, drug loading and release mechanism, recent developments in this area, and patents filed in the area of nanosponges are all highlighted in this study.HighlightsThe nanosponges are nanostructures that can carry small drug molecules.These can be administered by multiple routes and have a variety of applications.Variety of drugs with hydrophilic and hydrophobic characteristics can be administered for the treatment of many diseases.They are porous in nature, crosslinked by the use of multiple polymers.Their internal portion is porous in nature and has voids, which has the capacity to hold drug molecules.
Journal Article