Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,371
result(s) for
"Biometric Identification - methods"
Sort by:
Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms
by
Ranjan, Rajeev
,
Hu, Ying
,
Hahn, Carina A.
in
Algorithms
,
Artificial intelligence
,
Artificial neural networks
2018
Achieving the upper limits of face identification accuracy in forensic applications can minimize errors that have profound social and personal consequences. Although forensic examiners identify faces in these applications, systematic tests of their accuracy are rare. How can we achieve the most accurate face identification: using people and/or machines working alone or in collaboration? In a comprehensive comparison of face identification by humans and computers, we found that forensic facial examiners, facial reviewers, and superrecognizers were more accurate than fingerprint examiners and students on a challenging face identification test. Individual performance on the test varied widely. On the same test, four deep convolutional neural networks (DCNNs), developed between 2015 and 2017, identified faces within the range of human accuracy. Accuracy of the algorithms increased steadily over time, with the most recent DCNN scoring above the median of the forensic facial examiners. Using crowd-sourcing methods, we fused the judgments of multiple forensic facial examiners by averaging their rating-based identity judgments. Accuracy was substantially better for fused judgments than for individuals working alone. Fusion also served to stabilize performance, boosting the scores of lower-performing individuals and decreasing variability. Single forensic facial examiners fused with the best algorithm were more accurate than the combination of two examiners. Therefore, collaboration among humans and between humans and machines offers tangible benefits to face identification accuracy in important applications. These results offer an evidence-based roadmap for achieving the most accurate face identification possible.
Journal Article
Biometric Recognition: A Systematic Review on Electrocardiogram Data Acquisition Methods
by
Conceição, Raquel C.
,
Pereira, Teresa M. C.
,
Sebastião, Raquel
in
acquisition devices
,
acquisition methods
,
Algorithms
2023
In the last decades, researchers have shown the potential of using Electrocardiogram (ECG) as a biometric trait due to its uniqueness and hidden nature. However, despite the great number of approaches found in the literature, no agreement exists on the most appropriate methodology. This paper presents a systematic review of data acquisition methods, aiming to understand the impact of some variables from the data acquisition protocol of an ECG signal in the biometric identification process. We searched for papers on the subject using Scopus, defining several keywords and restrictions, and found a total of 121 papers. Data acquisition hardware and methods vary widely throughout the literature. We reviewed the intrusiveness of acquisitions, the number of leads used, and the duration of acquisitions. Moreover, by analyzing the literature, we can conclude that the preferable solutions include: (1) the use of off-the-person acquisitions as they bring ECG biometrics closer to viable, unconstrained applications; (2) the use of a one-lead setup; and (3) short-term acquisitions as they required fewer numbers of contact points, making the data acquisition of benefit to user acceptance and allow faster acquisitions, resulting in a user-friendly biometric system. Thus, this paper reviews data acquisition methods, summarizes multiple perspectives, and highlights existing challenges and problems. In contrast, most reviews on ECG-based biometrics focus on feature extraction and classification methods.
Journal Article
EEG-Based Personal Identification by Special Design Domain-Adaptive Autoencoder
2025
Individual brain activity patterns derived from electroencephalogram (EEG) data offer a unique source for personal identification, introducing a novel approach to the field. Autoencoders are well-known machine learning models that automate feature extraction, which is a crucial step in biometric identification. Among various types of autoencoders, the domain-adaptive autoencoder (DAAE) is explored for feature extraction. The extracted latent features are employed by four machine learning classifiers, KNN, ANN, SVM and RF, for personal identification. Two domain adaptation approaches were presented. The proposed frameworks were evaluated in a longitudinal setting, using three types of EEG recordings: resting state, auditory and cognitive stimuli. Model performance was assessed through experiments involving seven-, five- and two-subject classification tasks. The highest identification accuracy, 100%, was achieved by the SVM-based model in the two-subject experiment, using features extracted with the uniform referential DAAE. Similarly, the RF-based model attained an accuracy of 99.84% in the two-subject experiment when trained on features obtained from the softmin referential DAAE. As expected, accuracy declined with an increasing number of subjects in the dataset, reflecting the difficulty of multi-subject classification.
Journal Article
Medical-Grade ECG Sensor for Long-Term Monitoring
2020
The recent trend in electrocardiogram (ECG) device development is towards wireless body sensors applied for patient monitoring. The ultimate goal is to develop a multi-functional body sensor that will provide synchronized vital bio-signs of the monitored user. In this paper, we present an ECG sensor for long-term monitoring, which measures the surface potential difference between proximal electrodes near the heart, called differential ECG lead or differential lead, in short. The sensor has been certified as a class IIa medical device and is available on the market under the trademark Savvy ECG. An improvement from the user’s perspective—immediate access to the measured data—is also implemented into the design. With appropriate placement of the device on the chest, a very clear distinction of all electrocardiographic waves can be achieved, allowing for ECG recording of high quality, sufficient for medical analysis. Experimental results that elucidate the measurements from a differential lead regarding sensors’ position, the impact of artifacts, and potential diagnostic value, are shown. We demonstrate the sensors’ potential by presenting results from its various areas of application: medicine, sports, veterinary, and some new fields of investigation, like hearth rate variability biofeedback assessment and biometric authentication.
Journal Article
ECG-Based Biometric Recognition: A Survey of Methods and Databases
by
Meltzer, David
,
Luengo, David
in
Algorithms
,
Biometric identification
,
Biometric Identification - methods
2025
This work presents a comprehensive and chronologically ordered survey of existing studies and data sources on Electrocardiogram (ECG) based biometric recognition systems. This survey is organized in terms of the two main goals pursued in it: first, a description of the main ECG features and recognition techniques used in the existing literature, including a comprehensive compilation of references; second, a survey of the ECG databases available and used by the referenced studies. The most relevant characteristics of the databases are identified, and a comprehensive compilation of databases is given. To date, no other work has presented such a complete overview of both studies and data sources for ECG-based biometric recognition. Readers interested in the subject can obtain an understanding of the state of the art, easily identifying specific key papers by using different criteria, and become aware of the databases where they can test their novel algorithms.
Journal Article
Real-Time PPG-Based Biometric Identification: Advancing Security with 2D Gram Matrices and Deep Learning Models
2025
The integration of liveness detection into biometric systems is crucial for countering spoofing attacks and enhancing security. This study investigates the efficacy of photoplethysmography (PPG) signals, which offer distinct advantages over traditional biometric techniques. PPG signals are non-invasive, inherently contain liveness information that is highly resistant to spoofing, and are cost-efficient, making them a superior alternative for biometric authentication. A comprehensive protocol was established to collect PPG signals from 40 subjects using a custom-built acquisition system. These signals were then transformed into two-dimensional representations through the Gram matrix conversion technique. To analyze and authenticate users, we employed an EfficientNetV2 B0 model integrated with a Long Short-Term Memory (LSTM) network, achieving a remarkable 99% accuracy on the test set. Additionally, the model demonstrated outstanding precision, recall, and F1 scores. The refined model was further validated in real-time identification scenarios, underscoring its effectiveness and robustness for next-generation biometric recognition systems.
Journal Article
Behavioral biometric optical tactile sensor for instantaneous decoupling of dynamic touch signals in real time
2024
Decoupling dynamic touch signals in the optical tactile sensors is highly desired for behavioral tactile applications yet challenging because typical optical sensors mostly measure only static normal force and use imprecise multi-image averaging for dynamic force sensing. Here, we report a highly sensitive upconversion nanocrystals-based behavioral biometric optical tactile sensor that instantaneously and quantitatively decomposes dynamic touch signals into individual components of vertical normal and lateral shear force from a single image in real-time. By mimicking the sensory architecture of human skin, the unique luminescence signal obtained is axisymmetric for static normal forces and non-axisymmetric for dynamic shear forces. Our sensor demonstrates high spatio-temporal screening of small objects and recognizes fingerprints for authentication with high spatial-temporal resolution. Using a dynamic force discrimination machine learning framework, we realized a Braille-to-Speech translation system and a next-generation dynamic biometric recognition system for handwriting.
A sensitive upconversion nanocrystal-based biometric optical tactile sensor instantaneously and quantitatively decomposes dynamic touch signals into individual components of vertical normal and lateral shear force from a single image in real-time.
Journal Article
Photoplethysmogram (PPG)-Based Biometric Identification Using 2D Signal Transformation and Multi-Scale Feature Fusion
2025
Using Photoplethysmogram (PPG) signals for identity recognition has been proven effective in biometric authentication. However, in real-world applications, PPG signals are prone to interference from noise, physical activity, diseases, and other factors, making it challenging to ensure accurate user recognition and verification in complex environments. To address these issues, this paper proposes an improved MSF-SE ResNet50 (Multi-Scale Feature Squeeze-and-Excitation ResNet50) model based on 2D PPG signals. Unlike most existing methods that directly process one-dimensional PPG signals, this paper adopts a novel approach based on two-dimensional PPG signal processing. By applying Continuous Wavelet Transform (CWT), the preprocessed one-dimensional PPG signal is transformed into a two-dimensional time-frequency map, which not only preserves the time-frequency characteristics of the signal but also provides richer spatial information. During the feature extraction process, the SENet module is first introduced to enhance the ability to extract distinctive features. Next, a novel Lightweight Multi-Scale Feature Fusion (LMSFF) module is proposed, which addresses the limitation of single-scale feature extraction in existing methods by employing parallel multi-scale convolutional operations. Finally, cross-stage feature fusion is implemented, overcoming the limitations of traditional feature fusion methods. These techniques work synergistically to improve the model’s performance. On the BIDMC dataset, the MSF-SE ResNet50 model achieved accuracy, precision, recall, and F1 scores of 98.41%, 98.19%, 98.27%, and 98.23%, respectively. Compared to existing state-of-the-art methods, the proposed model demonstrates significant improvements across all evaluation metrics, highlighting its significance in terms of network architecture and performance.
Journal Article
Preprocessing of Iris Images for BSIF-Based Biometric Systems: Binary Detected Edges and Iris Unwrapping
by
Rubio, Arthur
,
Magnier, Baptiste
in
Accuracy
,
Algorithms
,
binarized statistical image features
2024
This work presents a novel approach to enhancing iris recognition systems through a two-module approach focusing on low-level image preprocessing techniques and advanced feature extraction. The primary contributions of this paper include: (i) the development of a robust preprocessing module utilizing the Canny algorithm for edge detection and the circle-based Hough transform for precise iris extraction, and (ii) the implementation of Binary Statistical Image Features (BSIF) with domain-specific filters trained on iris-specific data for improved biometric identification. By combining these advanced image preprocessing techniques, the proposed method addresses key challenges in iris recognition, such as occlusions, varying pigmentation, and textural diversity. Experimental results on the Human-inspired Domain-specific Binarized Image Features (HDBIF) Dataset, consisting of 1892 iris images, confirm the significant enhancements achieved. Moreover, this paper offers a comprehensive and reproducible research framework by providing source codes and access to the testing database through the Notre Dame University dataset website, thereby facilitating further application and study. Future research will focus on exploring adaptive algorithms and integrating machine learning techniques to improve performance across diverse and unpredictable real-world scenarios.
Journal Article
A Facial Recognition Mobile App for Patient Safety and Biometric Identification: Design, Development, and Validation
by
Choi, Tae Hyun
,
Kim, Sang Wha
,
Kim, Youngmin
in
Adolescent
,
Biometric identification
,
Biometric Identification - instrumentation
2019
Patient verification by unique identification is an important procedure in health care settings. Risks to patient safety occur throughout health care settings by failure to correctly identify patients, resulting in the incorrect patient, incorrect site procedure, incorrect medication, and other errors. To avoid medical malpractice, radio-frequency identification (RFID), fingerprint scanners, iris scanners, and other technologies have been implemented in care settings. The drawbacks of these technologies include the possibility to lose the RFID bracelet, infection transmission, and impracticality when the patient is unconscious.
The purpose of this study was to develop a mobile health app for patient identification to overcome the limitations of current patient identification alternatives. The development of this app is expected to provide an easy-to-use alternative method for patient identification.
We have developed a facial recognition mobile app for improved patient verification. As an evaluation purpose, a total of 62 pediatric patients, including both outpatient and inpatient, were registered for the facial recognition test and tracked throughout the facilities for patient verification purpose.
The app was developed to contain 5 main parts: registration, medical records, examinations, prescriptions, and appointments. Among 62 patients, 30 were outpatients visiting plastic surgery department and 32 were inpatients reserved for surgery. Whether patients were under anesthesia or unconscious, facial recognition verified all patients with 99% accuracy even after a surgery.
It is possible to correctly identify both outpatients and inpatients and also reduce the unnecessary cost of patient verification by using the mobile facial recognition app with great accuracy. Our mobile app can provide valuable aid to patient verification, including when the patient is unconscious, as an alternative identification method.
Journal Article