Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
4,779 result(s) for "Bionics"
Sort by:
Bio-inspired structures and design
\"Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bioinspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers\"-- Provided by publisher.
Visualized in-sensor computing
In artificial nervous systems, conductivity changes indicate synaptic weight updates, but they provide limited information compared to living organisms. We present the pioneering design and production of an electrochromic neuromorphic transistor employing color updates to represent synaptic weight for in-sensor computing. Here, we engineer a specialized mechanism for adaptively regulating ion doping through an ion-exchange membrane, enabling precise control over color-coded synaptic weight, an unprecedented achievement. The electrochromic neuromorphic transistor not only enhances electrochromatic capabilities for hardware coding but also establishes a visualized pattern-recognition network. Integrating the electrochromic neuromorphic transistor with an artificial whisker, we simulate a bionic reflex system inspired by the longicorn beetle, achieving real-time visualization of signal flow within the reflex arc in response to environmental stimuli. This research holds promise in extending the biomimetic coding paradigm and advancing the development of bio-hybrid interfaces, particularly in incorporating color-based expressions. The communication of colour information stands as one of the most immediate and widespread methods of interaction among biological entities. Xu et al. report an electrochromic neuromorphic transistor employing color updates to represent synaptic weight for real-time visualised in-sensor computing.
Biomimicry : innovation inspired by nature
Introduces some of the men and women who are working in the field of biomimicry--a science that studies nature's models and then imitates them to solve human problems--and considers the implications of such studies for the future of mankind.
Laser-based bionic manufacturing
Over millions of years of natural evolution, organisms have developed nearly perfect structures and functions. The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generation of structural materials, and is driving the future paradigm shift of modern materials science and engineering. However, the complex structures and multifunctional integrated optimization of organisms far exceed the capability of artificial design and fabrication technology, and new manufacturing methods are urgently needed to achieve efficient reproduction of biological functions. As one of the most valuable advanced manufacturing technologies of the 21st century, laser processing technology provides an efficient solution to the critical challenges of bionic manufacturing. This review outlines the processing principles, manufacturing strategies, potential applications, challenges, and future development outlook of laser processing in bionic manufacturing domains. Three primary manufacturing strategies for laser-based bionic manufacturing are elucidated: subtractive manufacturing, equivalent manufacturing, and additive manufacturing. The progress and trends in bionic subtractive manufacturing applied to micro/nano structural surfaces, bionic equivalent manufacturing for surface strengthening, and bionic additive manufacturing aiming to achieve bionic spatial structures, are reported. Finally, the key problems faced by laser-based bionic manufacturing, its limitations, and the development trends of its existing technologies are discussed. Provide a comprehensive overview of laser-based bionic manufacturing technology and its applications. Present remarkable progress in bionic manufacturing through laser subtractive manufacturing, laser equivalent manufacturing, and laser additive manufacturing. Outline research limitations and prospects for the development of laser-based bionic manufacturing.
Ultra low power bioelectronics : fundamentals, biomedical applications, and bio-inspired systems
\"This book provides, for the first time, a broad and deep treatment of the fields of both ultra low power electronics and bioelectronics. It discusses fundamental principles and circuits for ultra low power electronic design and their applications in biomedical systems. It also discusses how ultra energy efficient cellular and neural systems in biology can inspire revolutionary low power architectures in mixed-signal and RF electronics. The book presents a unique, unifying view of ultra low power analog and digital electronics and emphasizes the use of the ultra energy efficient subthreshold regime of transistor operation in both. Chapters on batteries, energy harvesting, and the future of energy provide an understanding of fundamental relationships between energy use and energy generation at small scales and at large scales. A wealth of insights and examples from brain implants, cochlear implants, bio-molecular sensing, cardiac devices, and bio-inspired systems make the book useful and engaging for students and practising engineers\"--Provided by publisher.
Stimuli-responsive composite biopolymer actuators with selective spatial deformation behavior
Bioinspired actuators with stimuli-responsive and deformable properties are being pursued in fields such as artificial tissues, medical devices and diagnostics, and intelligent biosensors. These applications require that actuator systems have biocompatibility, controlled deformability, biodegradability, mechanical durability, and stable reversibility. Herein, we report a bionic actuator system consisting of stimuli-responsive genetically engineered silk–elastin-like protein (SELP) hydrogels and wood-derived cellulose nanofibers (CNFs), which respond to temperature and ionic strength underwater by ecofriendly methods. Programmed site-selective actuation can be predicted and folded into three-dimensional (3D) origami-like shapes. The reversible deformation performance of the SELP/CNF actuators was quantified, and complex spatial transformations of multilayer actuators were demonstrated, including a biomimetic flower design with selective petal movements. Such actuators consisting entirely of biocompatible and biodegradable materials will offer an option toward constructing stimuli-responsive systems for in vivo biomedicine soft robotics and bionic research.
Unstoppable : true stories of amazing bionic animals
\"In this title, readers learn the stories of animals that are both benefitting from and helping out the world of prosthetic science - covering all species, situations, and science backgrounds. From the high-tech science of 3D printing, to inflatables, to toy wheels, this title has it all, including visits with subjects who are accessible for interviews and photography. INSPIRING is a perfect fit for animal lovers and science enthusiasts alike.\"-- Provided by publisher.
Reducing the energy cost of human walking using an unpowered exoskeleton
With efficiencies derived from evolution, growth and learning, humans are very well-tuned for locomotion 1 . Metabolic energy used during walking can be partly replaced by power input from an exoskeleton 2 , but is it possible to reduce metabolic rate without providing an additional energy source? This would require an improvement in the efficiency of the human–machine system as a whole, and would be remarkable given the apparent optimality of human gait. Here we show that the metabolic rate of human walking can be reduced by an unpowered ankle exoskeleton. We built a lightweight elastic device that acts in parallel with the user's calf muscles, off-loading muscle force and thereby reducing the metabolic energy consumed in contractions. The device uses a mechanical clutch to hold a spring as it is stretched and relaxed by ankle movements when the foot is on the ground, helping to fulfil one function of the calf muscles and Achilles tendon. Unlike muscles, however, the clutch sustains force passively. The exoskeleton consumes no chemical or electrical energy and delivers no net positive mechanical work, yet reduces the metabolic cost of walking by 7.2 ± 2.6% for healthy human users under natural conditions, comparable to savings with powered devices. Improving upon walking economy in this way is analogous to altering the structure of the body such that it is more energy-effective at walking. While strong natural pressures have already shaped human locomotion, improvements in efficiency are still possible. Much remains to be learned about this seemingly simple behaviour. The attachment of a simple, unpowered, mechanical exoskeleton to the foot and ankle results in a net saving of 7% of the metabolic energy expended in human walking. Exoskeletons that act like muscles Walking is the most commonplace of activities, yet we know remarkably little about it and no robot has yet reproduced the grace and poise of a human walk. Steven Collins et al . now show that the attachment of a simple mechanical exoskeleton to the foot and ankle results in a 7% reduction of the metabolic energy expended in walking. This work shows that net energy input is not a fundamental requirement for reducing the metabolic cost of human walking, and that reducing calf muscle forces — while also fulfilling normal ankle functions and minimizing penalties associated with added mass or restricted motions — can be beneficial.