Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
8,303 result(s) for "Biopesticides"
Sort by:
The Survival and Physiological Response of ICalliptamus abbreviatus/I Ikonn to Flavonoids Rutin and Quercetin
It is of great significance to develop and utilize plant-derived compounds for the sustainable control of grasshopper. This study assessed the adverse effects of rutin and quercetin on grasshopper, as well as the insect’s physiological response to these two plant-derived compounds. Rutin and quercetin all exhibited toxic effects on grasshopper, with quercetin showing a stronger toxicity, which indicated that they—especially quercetin—have the potential to be developed as biopesticides to control the grasshopper. Insect-resistant substances from plants are important natural resources that human beings can potentially develop and use to control pests. In this study, we explored the adverse effects of rutin and quercetin on grasshopper (Calliptamus abbreviatus), as well as the insect’s physiological response to these substances in laboratory and field experiments. These two plant compounds exhibited toxic effects on C. abbreviatus, with quercetin showing a stronger toxicity, indicated by a lower survival, slower development, and higher induced gene expression and activities of UDP-glucuronosyltransferase, cytochrome P450s, superoxide dismutase, peroxidase and catalase, compared to rutin. These compounds, especially quercetin, have the potential to be developed as biopesticides to control grasshoppers.
Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience
Plant-associated microbiomes can boost plant growth or control pathogens. Altering the microbiome by inoculation with a consortium of plant growth-promoting rhizobacteria (PGPR) can enhance plant development and mitigate against pathogens as well as abiotic stresses. Manipulating the plant holobiont by microbiome engineering is an emerging biotechnological strategy to improve crop yields and resilience. Indirect approaches to microbiome engineering include the use of soil amendments or selective substrates, and direct approaches include inoculation with specific probiotic microbes, artificial microbial consortia, and microbiome breeding and transplantation. We highlight why and how microbiome services could be incorporated into traditional agricultural practices and the gaps in knowledge that must be answered before these approaches can be commercialized in field applications. Symbiotic bacteria can boost plant growth, control pathogens, or alleviate abiotic stress.Microbiome engineering incorporated into traditional agricultural practices can improve microbial ecosystem services for crop yield and resilience.New agricultural practices may include microbiome breeding, transplantation, and targeted microbiome engineering, for example by strategic soil amendments in which selective addition of plant exudates attracts and maintains beneficial microbes, or by directly applying microbial consortia as probiotics.Customized microbiome engineering will be necessary to cope with the many variables, including soil type, environmental/climatic conditions, growth stage, and genotype of the plant, to influence the microbiome in a purposeful and effective manner.Breeding 'microbe-friendly' crops can complement microbiome engineering to better attract and maintain beneficial microbiomes.
A Perspective on RNAi-Based Biopesticides
Sustainable agriculture relies on practices and technologies that combine effectiveness with a minimal environmental footprint. RNA interference (RNAi), a eukaryotic process in which transcript expression is reduced in a sequence-specific manner, can be co-opted for the control of plant pests and pathogens in a topical application system. Double-stranded RNA (dsRNA), the key trigger molecule of RNAi, has been shown to provide protection without the need for integration of dsRNA-expressing constructs as transgenes. Consequently, development of RNA-based biopesticides is gaining momentum as a narrow-spectrum alternative to chemical-based control measures, with pests and pathogens targeted with accuracy and specificity. Limitations for a commercially viable product to overcome include stable delivery of the topically applied dsRNA and extension of the duration of protection. In addition to the research focus on delivery of dsRNA, development of regulatory frameworks, risk identification, and establishing avoidance and mitigation strategies is key to widespread deployment of topical RNAi technologies. Once in place, these measures will provide the crop protection industry with the certainty necessary to expend resources on the development of innovative dsRNA-based products. Readily evident risks to human health appear minimal, with multiple barriers to uptake and a long history of consumption of dsRNA from plant material. Unintended impacts to the environment are expected to be most apparent in species closely related to the target. Holistic design practices, which incorporate bioinformatics-based dsRNA selection along with experimental testing, represent important techniques for elimination of adverse impacts.
Optimization of IPseudomonas aurantiaca/I ST-TJ4 Fermentation Medium and Its Control Effect on IPhytophthora cinnamomi/I
Previous research has indicated that Pseudomonas aurantiaca ST-TJ4 possesses a notable antagonistic impact on Phytophthora cinnamomi and holds promising potential for biocontrol. In this study, a combination of a single-factor experiment, a Plackett–Burman design and a response surface approach was employed to investigate the optimal formula of ST-TJ4 fermentation medium. Furthermore, the stability of ST-TJ4 fermentation filtrate and its biocontrol effect on Ph. cinnamomi in vivo were also evaluated. The results revealed that the optimal culture conditions for ST-TJ4 involved the use of 20.59 g/L of glucose and 18.76 g/L of yeast extract powder. Following optimization, the fermentation filtrate of ST-TJ4 exhibited an inhibition rate of 76.5%, representing a 15% increase compared to previous levels. Additionally, phzA, phzB, phzD, phzE, phzF and phzO genes involved in the synthesis of phenazine-1-carboxylic acid (PCA) and 2-hydroxyphenazine (2-OH-PHZ) were also upregulated. The ST-TJ4 fermentation filtrate demonstrated strong alkali resistance, weak acid resistance and favorable temperature and UV light stability. Furthermore, in vitro inoculation experiments confirmed that optimizing the fermentation medium reduced Ps. cinnamomi’s ability to infect the leaves of Rhododendron pulchrum.
Lab-to-Field Transition of RNA Spray Applications – How Far Are We?
The drastic loss of biodiversity has alarmed the public and raised sociopolitical demand for chemical pesticide-free plant production, which is now treated by governments worldwide as a top priority. Given this global challenge, RNAi-based technologies are rapidly evolving as a promising substitute to conventional chemical pesticides. Primarily, genetically modified (GM) crops expressing double-stranded (ds)RNA-mediating gene silencing of foreign transcripts have been developed. However, since the cultivation of GM RNAi crops is viewed negatively in numerous countries, GM-free exogenous RNA spray applications attract tremendous scientific and political interest. The sudden rise in demand for pesticide alternatives has boosted research on sprayable RNA biopesticides, generating significant technological developments and advancing the potential for field applications in the near future. Here we review the latest advances that could pave the way for a quick lab-to-field transition for RNA sprays, which, as safe, selective, broadly applicable, and cost-effective biopesticides, represent an innovation in sustainable crop production. Given these latest advances, we further discuss technological limitations, knowledge gaps in the research, safety concerns and regulatory requirements that need to be considered and addressed before RNA sprays can become a reliable and realistic agricultural approach.
In defence of Bacillus thuringiensis, the safest and most successful microbial insecticide available to humanity—a response to EFSA
The Bacillus cereus group contains vertebrate pathogens such as Bacillus anthracis and Bacillus cereus and the invertebrate pathogen Bacillus thuringiensis. Microbial biopesticides based on B. thuringiensis (Bt) are widely recognized as being among the safest and least environmentally damaging insecticidal products available. Nevertheless, a recent food poisoning incident prompted a European Food Safety Authority review which argued that B. thuringiensis poses a health risk equivalent to B. cereus, a causative agent of diarrhoea. However, a critical examination of available data, and this latest incident, provide no solid evidence that B. thuringiensis causes diarrhoea. Although relatively high levels of B. cereus-like spores can occur in foods, genotyping demonstrates that these are predominantly naturally-occurring strains rather than biopesticides. Moreover, MLST genotyping of > 2000 isolates show that biopesticide genotypes have never been isolated from any clinical infection. MLST data demonstrate that Bacillus cereus group is heterogeneous and formed of distinct clades with substantial differences in biology, ecology and host association. The group posing the greatest risk (the anthracis clade) is distantly related to the clade containing all biopesticides. These recent data support the long-held view that B. thuringiensis, and especially the strains used in Bt biopesticides, are very safe for humans.