Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
503 result(s) for "Bioteknologi"
Sort by:
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year‐on‐year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non‐vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis
Molecular profiling of single cells has advanced our knowledge of the molecular basis of development. However, current approaches mostly rely on dissociating cells from tissues, thereby losing the crucial spatial context of regulatory processes. Here, we apply an image-based single-cell transcriptomics method, sequential fluorescence in situ hybridization (seqFISH), to detect mRNAs for 387 target genes in tissue sections of mouse embryos at the 8–12 somite stage. By integrating spatial context and multiplexed transcriptional measurements with two single-cell transcriptome atlases, we characterize cell types across the embryo and demonstrate that spatially resolved expression of genes not profiled by seqFISH can be imputed. We use this high-resolution spatial map to characterize fundamental steps in the patterning of the midbrain–hindbrain boundary (MHB) and the developing gut tube. We uncover axes of cell differentiation that are not apparent from single-cell RNA-sequencing (scRNA-seq) data, such as early dorsal–ventral separation of esophageal and tracheal progenitor populations in the gut tube. Our method provides an approach for studying cell fate decisions in complex tissues and development. Improved integration of spatial and single-cell transcriptomic data provides insights into mouse development.
Structures, Biosynthesis, and Physiological Functions of (1,3;1,4)-ß-D-Glucans
(1,3;1,4)-ß-D-Glucans, also named as mixed-linkage glucans, are unbranched non-cellulosic polysaccharides containing both (1,3)- and (1,4)-ß-linkages. The linkage ratio varies depending upon species origin and has a significant impact on the physicochemical properties of the (1,3;1,4)-ß-D-glucans. (1,3;1,4)-ß-D-Glucans were thought to be unique in the grasses family (Poaceae); however, evidence has shown that (1,3;1,4)-ß-D-glucans are also synthesized in other taxa, including horsetail fern Equisetum, algae, lichens, and fungi, and more recently, bacteria. The enzyme involved in (1,3;1,4)-ß-D-glucan biosynthesis has been well studied in grasses and cereal. However, how this enzyme is able to assemble the two different linkages remains a matter of debate. Additionally, the presence of (1,3;1,4)-ß-D-glucan across the species evolutionarily distant from Poaceae but absence in some evolutionarily closely related species suggest that the synthesis is either highly conserved or has arisen twice as a result of convergent evolution. Here, we compare the structure of (1,3;1,4)-ß-D-glucans present across various taxonomic groups and provide up-to-date information on how (1,3;1,4)-ß-D-glucans are synthesized and their functions.
Isolation and characterization of extracellular vesicle subpopulations from tissues
Extracellular vesicles (EVs) are lipid bilayered membrane structures released by all cells. Most EV studies have been performed by using cell lines or body fluids, but the number of studies on tissue-derived EVs is still limited. Here, we present a protocol to isolate up to six different EV subpopulations directly from tissues. The approach includes enzymatic treatment of dissociated tissues followed by differential ultracentrifugation and density separation. The isolated EV subpopulations are characterized by electron microscopy and RNA profiling. In addition, their protein cargo can be determined with mass spectrometry, western blot and ExoView. Tissue-EV isolation can be performed in 22 h, but a simplified version can be completed in 8 h. Most experiments with the protocol have used human melanoma metastases, but the protocol can be applied to other cancer and non-cancer tissues. The procedure can be adopted by researchers experienced with cell culture and EV isolation. This protocol describes how to isolate up to six different subpopulations of extracellular vesicles (EVs) from tissues. The procedure includes detailed instructions for EV characterization using electron microscopy, RNA and protein analysis.
Gene‐specific correlation of RNA and protein levels in human cells and tissues
An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non‐secreted proteins based on parallel reaction monitoring to measure, at steady‐state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene‐specific RNA‐to‐protein (RTP) conversion factor independent of the tissue type is introduced, thus significantly enhancing the predictability of protein copy numbers from RNA levels. The results show that the RTP ratio varies significantly with a few hundred copies per mRNA molecule for some genes to several hundred thousands of protein copies per mRNA molecule for others. In conclusion, our data suggest that transcriptome analysis can be used as a tool to predict the protein copy numbers per cell, thus forming an attractive link between the field of genomics and proteomics. Synopsis A comparison of absolute protein copy numbers with mRNA levels across human tissues and cell lines shows that protein levels correlate well with transcript levels, if a gene‐specific and cell/tissue‐independent RNA‐to‐protein (RTP) conversion factor is introduced. A targeted proteomics approach based on spike‐in of stable isotope‐labeled protein fragments is developed to measure absolute protein copy numbers across human tissues and cell lines. Transcript and protein levels within a sample do not correlate well, unless a gene‐specific RNA‐to‐protein (RTP) factor is introduced. The RTP‐ratio varies significantly between genes, ranging from thousands to millions of protein copies per mRNA molecule, but does not vary across tissues. Transcriptome analysis can be used as a tool to predict protein copy numbers per cell, thus forming an attractive link between genomics and proteomics. Graphical Abstract A comparison of absolute protein copy numbers with mRNA levels across human tissues and cell lines shows that protein levels correlate well with transcript levels, if a gene‐specific and cell/tissue‐independent RNA‐to‐protein (RTP) conversion factor is introduced.
A chromosome conformation capture ordered sequence of the barley genome
Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley ( Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion. The International Barley Genome Sequencing Consortium reports sequencing and assembly of a reference genome for barley, Hordeum vulgare . Barley genome sequenced Triticeae grasses, which include barley, wheat and rye, are widely cultivated plants with particularly complex genomes and evolutionary histories. Sequencing of the barley genome has been particularly challenging owing to its large size and particular genomic features, such as an abundance of repetitive elements. Nils Stein and colleagues of the International Barley Genome Sequencing Consortium report sequencing and assembly of a reference genome for barley ( Hordeumvulgare L). They use a combined approach of hierarchical shotgun sequencing of bacterial artificial chromosomes, genome mapping on nanochannel arrays and chromosome-scale scaffolding with Hi-C sequencing. This brings the first comprehensive, completely ordered assembly of the pericentromeric regions of a Triticeae genome. The authors also sequenced and examined genetic diversity in the exomes of 96 European elite barley lines with a spring or winter growth habit, and highlight the utility of this resource for cereal genomics and breeding programs.
The mosaic oat genome gives insights into a uniquely healthy cereal crop
Cultivated oat ( Avena sativa L.) is an allohexaploid (AACCDD, 2 n  = 6 x  = 42) thought to have been domesticated more than 3,000 years ago while growing as a weed in wheat, emmer and barley fields in Anatolia 1 , 2 . Oat has a low carbon footprint, substantial health benefits and the potential to replace animal-based food products. However, the lack of a fully annotated reference genome has hampered efforts to deconvolute its complex evolutionary history and functional gene dynamics. Here we present a high-quality reference genome of A . sativa and close relatives of its diploid ( Avena longiglumis , AA, 2 n  = 14) and tetraploid ( Avena insularis , CCDD, 2 n  = 4 x  = 28) progenitors. We reveal the mosaic structure of the oat genome, trace large-scale genomic reorganizations in the polyploidization history of oat and illustrate a breeding barrier associated with the genome architecture of oat. We showcase detailed analyses of gene families implicated in human health and nutrition, which adds to the evidence supporting oat safety in gluten-free diets, and we perform mapping-by-sequencing of an agronomic trait related to water-use efficiency. This resource for the Avena genus will help to leverage knowledge from other cereal genomes, improve understanding of basic oat biology and accelerate genomics-assisted breeding and reanalysis of quantitative trait studies. Assembly of the hexaploid oat genome and its diploid and tetraploid relatives clarifies the evolutionary history of oat and allows mapping of genes for agronomic traits.
The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications
Specialized epitope tags are widely used for detecting, manipulating or purifying proteins, but often their versatility is limited. Here, we introduce the ALFA-tag, a rationally designed epitope tag that serves a remarkably broad spectrum of applications in life sciences while outperforming established tags like the HA-, FLAG®- or myc-tag. The ALFA-tag forms a small and stable α-helix that is functional irrespective of its position on the target protein in prokaryotic and eukaryotic hosts. We characterize a nanobody (NbALFA) binding ALFA-tagged proteins from native or fixed specimen with low picomolar affinity. It is ideally suited for super-resolution microscopy, immunoprecipitations and Western blotting, and also allows in vivo detection of proteins. We show the crystal structure of the complex that enabled us to design a nanobody mutant (NbALFA PE ) that permits efficient one-step purifications of native ALFA-tagged proteins, complexes and even entire living cells using peptide elution under physiological conditions. Epitope tags are widely used in various applications, but often lack versatility. Here, the authors introduce a small, alpha helical tag, which is recognized by a high affinity nanobody and can be used in a range of different applications, from protein purification to super-resolution imaging and in vivo detection of proteins.
Klebsiella pneumoniae Biofilms and Their Role in Disease Pathogenesis
The ability to form biofilms is a crucial virulence trait for several microorganisms, including Klebsiella pneumoniae – a Gram-negative encapsulated bacterium often associated with nosocomial infections. It is estimated that 65-80% of bacterial infections are biofilm related. Biofilms are complex bacterial communities composed of one or more species encased in an extracellular matrix made of proteins, carbohydrates and genetic material derived from the bacteria themselves as well as from the host. Bacteria in the biofilm are shielded from immune responses and antibiotics. The present review discusses the characteristics of K. pneumoniae biofilms, factors affecting biofilm development, and their contribution to infections. We also explore different model systems designed to study biofilm formation in this species. A great number of factors contribute to biofilm establishment and maintenance in K. pneumoniae , which highlights the importance of this mechanism for the bacterial fitness. Some of these molecules could be used in future vaccines against this bacterium. However, there is still a lack of in vivo models to evaluate the contribution of biofilm development to disease pathogenesis. With that in mind, the combination of different methodologies has great potential to provide a more detailed scenario that more accurately reflects the steps and progression of natural infection.
Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells
RNA-based therapeutics hold great promise for treating diseases and lipid nanoparticles (LNPs) represent the most advanced platform for RNA delivery. However, the fate of the LNP-mRNA after endosome-engulfing and escape from the autophagy-lysosomal pathway remains unclear. To investigate this, mRNA (encoding human erythropoietin) was delivered to cells using LNPs, which shows, for the first time, a link between LNP-mRNA endocytosis and its packaging into extracellular vesicles (endo-EVs: secreted after the endocytosis of LNP-mRNA). Endosomal escape of LNP-mRNA is dependent on the molar ratio between ionizable lipids and mRNA nucleotides. Our results show that fractions of ionizable lipids and mRNA (1:1 molar ratio of hEPO mRNA nucleotides:ionizable lipids) of endocytosed LNPs were detected in endo-EVs. Importantly, these EVs can protect the exogenous mRNA during in vivo delivery to produce human protein in mice, detected in plasma and organs. Compared to LNPs, endo-EVs cause lower expression of inflammatory cytokines. Lipid nanoparticles (LNPs) are potential platforms for RNA-based therapeutics, but the fate of LNP-RNAs upon internalization into the cell is unclear. Here, the authors show that LNP-mRNAs and ionizable lipids escape the endosomes and are re-released via extracellular vesicles which could deliver the functional mRNA to other cells.