Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,362 result(s) for "Bird strike"
Sort by:
Risk Assessment Model Based on Set Pair Analysis Applied to Airport Bird Strikes
In order to comprehensively evaluate the risk of bird strike at airports and effectively prevent the occurrence of bird strike events, this paper constructs the risk assessment index system of airport bird strike from five perspectives of “personnel-bird-equipment-environment-management”. For the purpose of maximizing variances, the Analytic Hierarchy Process (AHP) and the entropy weight method are combined and used to obtain the comprehensive weights. The five-element connection number of Set Pair Analysis (SPA) is introduced to establish the identical-discrepancy-contrary airport bird strike risk assessment model, and the risk trend is analyzed according to the partial connection number for each order. The experiment results show that the combined weighting method can minimize the weight deviation and demonstrate good accuracy in determining the weights of indicators at all levels. The established airport bird strike risk assessment model can reasonably predict the risk trend, which is significant for airport personnel to carry out bird strike prevention works.
Multiple-Bird-Strike Probability Model and Dynamic Response of Engine Fan Blades
Bird strikes pose one of the most significant threats to aviation safety, often leading to substantial loss of life and economic damage. Many bird strike incidents involve multiple birds. However, in previous bird strike studies, the problem of multiple bird strikes has often been neglected. In this paper, the bird slicing process of a rotating engine fan is examined, and a probability model is introduced to assess the risk of multiple impacts on the fan blades. In addition, this paper utilized an implicit–explicit calculation method. The parameters of blade root stress, tip displacement, plastic deformation, and energy were selected to investigate the effects of the time interval and strike position of a bird strike on the dynamic response of and damage to the blades. The results indicated that the position of bird strikes has a more pronounced effect on blade damage compared to the time interval between impacts. Damage to a blade is most severe when the blade root is struck multiple times. Multiple bird strikes may not always lead to a significant increase in maximum blade tip displacement, and may even have a dampening effect.
Activity Modeling and Characterization for Airport Bird Situation Awareness Using Avian Radar Datasets
Birds in airport airspaces are critical threats to aviation safety. Avian radar systems are effective for long-range bird monitoring and hazard warning, but their functionalities are confined to a short-term temporal scale. Spatial–temporal activity modeling and characterization for birds are not studied comprehensively from historical radar datasets. This paper proposes a radar data analysis framework to characterize bird activities as a long-term functionality complement. Spatial domain modeling initializes data mining by extracting reference spots for data filtering. Bird activities are quantified in the temporal domain. Activity degrees are utilized for periodicity extraction with the daily segment random permutation strategy. Categorical probabilities are calculated to interpret bird activity periodicity characters. Historical radar datasets collected from an avian radar system are adopted for validation. The extracted activity periodicity trends for diurnal birds present prominent consistency with artificial observation records. Migratory bird periodicity trends present a good match with ornithology understandings. A preliminary experiment is presented to indicate the possibility of predicting bird activity levels, especially for migratory birds.
Assessing vulture translocation as a management tool to mitigate airport bird strikes
Collisions between wildlife and aircraft are a major safety concern for international aviation. In the Americas, vultures (Cathartidae) are considered to be one of the most hazardous bird species to airport operations. In this study, we evaluated the use of translocations as a management technique to reduce vulture abundance near the Manaus International Airport (MAO), Manaus, Brazil. The MAO is one of the busiest and most strategically important airports in South America, often referred to as the gateway to the Brazilian Amazon. We captured, wing-tagged, and translocated 98 vultures between August and October 2013 and between January and April 2014. The wing-tags were colored plastic tags specifically developed to tag vultures to enhance identification in flight and not alter bird behavior. The tagged vultures were translocated different distances (100, 150, and 200 km) from MAO. Only 25.5% of translocated vultures returned to the airport. However, the relative abundance of vultures did not differ between monitoring periods before and after captures and translocations. Our results demonstrated that the translocations failed to decrease MAO vulture abundance. We recommend habitat modifications associated with nonlethal (dispersion by bird repellents) and lethal (kill some individuals reinforcing dispersion) strategies to reduce vulture bird strike risks.
The Efficacy of Operational Bird Strike Prevention
Involving air traffic controllers and pilots into the bird strike prevention process is considered an essential step to increase aviation and avian safety. Prior to implementing operational measures such as real-time warning systems, it is vital to evaluate their feasibility. This paper studies the efficacy of a bird strike advisory system for air traffic control. In addition to the potential safety benefit, the possible impact on airport operations is analyzed. To this end, a previously developed collision avoidance algorithm underlying the system was tested in fast-time Monte Carlo simulations involving various air traffic and bird densities to obtain representative conclusions for different operational conditions. The results demonstrate the strong safety potential of operational bird strike prevention in case of precise bird movement prediction. Unless airports operate close to their capacity limits while bird abundance is high, the induced delays remain tolerable. Prioritization of hazardous strikes involving large individuals as well as flocks of birds are expected to support operational feasibility in all conditions.
Bird-Strike Damage Analysis and Preliminary Design of Composite Radome Structure Using Smoothed Particle Hydrodynamics
The bird-strike is the main reason that could lead to the severe damages to the aircraft and the cost. In addition, aviation certification authorities have to prove the integrity of bird strike. The verification method for bird-strike is not by the test to evaluate at the early design phase but, by the analytical method. In this paper, birds were idealized as fluid to evaluate the analytical assessment and the SPH method and effect analysis research were applied using commercial analyzing instrument, Abaqus. The SPH method has an advantage of reducing element deformation and analyzing time much more than the previous ALE or Lagrangian methods. In order to verify the bird-strike analysis, the structures with rigid body structures having infinite stiffness were analyzed and the effectiveness of bird-strike applied the SPH method confirmed by comparison of the analysis value with experiment value. In addition, as for the airworthiness requirements on modified aircraft, the maximum speed of aircraft was 8000 lbs., assuming the flight path was the same as birds, and conducted analysis of the bird-strike on the radome and the structure supporting the radome based on the additional installation of satellite antenna on the existing aircraft in order to verify the design ensuring the continuous safe flight and landing of the aircraft once striking with 4 lbs. of birds, as a result, it was confirmed that the structural stability of antenna structures and radome after modification was secured based on the analysis result of SPH method on the bird-strike. This analysis on the bird-strike can present the optimum design for the radome prior to the mock-up test and it allows to reduce the cost and time of the development.
Evaluating Impact Damage of Flat Composite Plate for Surrogate Bird-Strike Testing of Aeroengine Fan Blade
Bird-strike failure of fan blades is one of the basic challenges for the safety of aircraft engines. Simplified flat blade-like plates are always used for damage mechanism study of composite laminates. One undesirable issue is the failure at the root of clamped flat plates under high-velocity impact. For this purpose, two different strategies were exploited to obtain desirable impact damage distributions, namely the impact location and the boundary condition. Numerical models of the simplified flat blade-like plate and the bird projectile were constructed by using finite element method (FEM) and smoothed particle hydrodynamics (SPH) approaches. The impact damage distributions were comparatively investigated in detail. The numerical results show that changing the boundary condition is the most effective way to obtain preferable impact damages for further failure analysis of real fan blades. Present results will be useful to the future surrogate experimental design of simplified bird-strike testing.
Bird Strike - An Experimental, Theoretical, and Numerical Investigation
Bird strikes are one of the most dangerous threats to civil and military flight safety: between 1960 and 2014, they were responsible for the destruction of approximately 150 civil aircraft and the deaths of 271 people. This book presents a summary of the damage imposed on the aviation industries by their avian counterparts. This book first presents and analyzes the statistics obtained from bird strike databases and offers various methods for minimizing the overall probability of bird-strike events. The next chapters explore how to analyze the ability of aero-engine critical structures to withstand bird-strike events by implementing reliable experimental, theoretical, and numerical methods. Finally, the book investigates the impact of bird strikes on different components of aircrafts, such as the metal fuselage, composite fuselage, engines, wings, and tail, and proposes two new bird models, with explanations of their use.
A Sensitivity Analysis of the Damage Behavior of a Leading-Edge Subject to Bird Strike
This paper aims to investigate the crashworthiness capability of a commercial aircraft metallic sandwich leading edge, subjected to bird strike events. A sensitivity analysis is presented, aimed to assess the influence of the skin parameters (inner and outer faces and core thicknesses) on the leading-edge crashworthiness and to determine, among the configurations able to withstand a bird strike event, the best compromise in terms of weight and structural performances. In order to easily manage the design parameters and the output data, the ModeFrontier code was used in conjunction with the FE code Abaqus/Explicit. A dedicated python routine was developed to define a fully parametric simplified leading-edge model. To fulfill the aerodynamic requirements, the external surfaces were considered fixed during the sensitivity analysis, and, thus, only the internal leading edge’s components were modified to study their influence on the structural response. The total mass of the model, the maximum deformation and the energy dissipated due to material failure and the plastic deformations were monitored and used to compare and assess the behavior of each configuration.
Intelligent decision-making with bird-strike risk assessment for airport bird repellent
An intelligent decision-making method was proposed for airport bird-repelling based on a Support Vector Machine (SVM) and bird-strike risk assessment. The bird-strike risk assessment model is established with two exponential functions to separate the risk levels, while the SVM method includes two steps of training and testing. After the risk assessment, the Bird-Repelling Strategy Classification Model (BRSCM) was trained based on the expert knowledge and large amount of historical bird information collected by the airport linkage system for bird detection, surveillance and repelling. Then, in the testing step, the BRSCM was continuously optimised according to the real-time intelligent bird-repelling strategy results. Through several bird-repelling examples of a certain airport, it is demonstrated that the decision accuracy of BRSCM is relatively high, and it could solve new problems by self-correction. The proposed method achieved the optimised operation of multiple bird-repelling devices against real-time bird information with great improvement of bird-repelling effects, overcoming the tolerance of birds to the bird-repelling devices due to their long-term repeated operation.