Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
6,949 result(s) for "Blacks - genetics"
Sort by:
Multi-ancestry fine mapping implicates OAS1 splicing in risk of severe COVID-19
The OAS1/2/3 cluster has been identified as a risk locus for severe COVID-19 among individuals of European ancestry, with a protective haplotype of approximately 75 kilobases (kb) derived from Neanderthals in the chromosomal region 12q24.13. This haplotype contains a splice variant of OAS1 , which occurs in people of African ancestry independently of gene flow from Neanderthals. Using trans-ancestry fine-mapping approaches in 20,779 hospitalized cases, we demonstrate that this splice variant is likely to be the SNP responsible for the association at this locus, thus strongly implicating OAS1 as an effector gene influencing COVID-19 severity. Multi-ancestry fine-mapping of the OAS1/2/3 region shows that a splice site variant in OAS1 is likely responsible for the association of this locus with the risk of severe COVID-19.
Characterizing prostate cancer risk through multi-ancestry genome-wide discovery of 187 novel risk variants
The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry ( P  = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups. A multi-ancestry genome-wide association study of prostate cancer performed in 156,319 cases and 788,443 controls identifies 187 novel risk variants associated with the disease. Genetic risk scores associated with overall risk, and risk of aggressive disease in men of African ancestry.
Genetic Structure and History of Africans and African Americans
Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (approximately 71%), European (approximately 13%), and other African (approximately 8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies.
Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response
In this study we characterized the genetic variability of 146 clinically relevant genes influencing drug pharmacokinetics in African and European subpopulations, which are key determinants for interindividual variations in drug efficacy and adverse drug reactions. By integrating data from the 1000 Genomes Project (n = 1,092 individuals) and the Exome Sequencing Project (ESP; n = 6,503 individuals), single-nucleotide variants (SNVs) were identified and analyzed regarding frequency, functional consequences, and ethnic diversity. In total, we found 12,152 SNVs in exons, 312 of which were novel. The majority of variants were rare (minor allele frequency (MAF) <1%; 92.9%) and nonsynonymous (56.2%). We calculated that individuals of European and African descent harbor, on average, 100.8 and 121.4 variants across the 146 pharmacogenes studied, respectively. Additionally, by analyzing variation patterns across these populations, we pinpointed potential priority genes for population-adjusted genetic profiling strategies. Furthermore, we estimated, based on our variant frequency analyses, that approximately 30–40% of functional variability in pharmacogenes can be attributed to rare variants. Our results indicate that these clinically important genes are genetically highly variable and differ considerably between populations. Furthermore, the large extent of rare variants emphasizes the need for sequencing-based approaches and effective functionality predictions to allow for true personalized medicine.
Increasing African genomic data generation and sharing to resolve rare and undiagnosed diseases in Africa: a call-to-action by the H3Africa rare diseases working group
The rich and diverse genomics of African populations is significantly underrepresented in reference and in disease-associated databases. This renders interpreting the Next Generation Sequencing (NGS) data and reaching a diagnostic more difficult in Africa and for the African diaspora. It increases chances for false positives with variants being misclassified as pathogenic due to their novelty or rarity. We can increase African genomic data by (1) making consent for sharing aggregate frequency data an essential component of research toolkit; (2) encouraging investigators with African data to share available data through public resources such as gnomAD, AVGD, ClinVar, DECIPHER and to use MatchMaker Exchange; (3) educating African research participants on the meaning and value of sharing aggregate frequency data; and (4) increasing funding to scale-up the production of African genomic data that will be more representative of the geographical and ethno-linguistic variation on the continent. The RDWG of H3Africa is hereby calling to action because this underrepresentation accentuates the health disparities. Applying the NGS to shorten the diagnostic odyssey or to guide therapeutic options for rare diseases will fully work for Africans only when public repositories include sufficient data from African subjects.
Genome-wide association study across European and African American ancestries identifies a SNP in DNMT3B contributing to nicotine dependence
Cigarette smoking is a leading cause of preventable mortality worldwide. Nicotine dependence, which reduces the likelihood of quitting smoking, is a heritable trait with firmly established associations with sequence variants in nicotine acetylcholine receptor genes and at other loci. To search for additional loci, we conducted a genome-wide association study (GWAS) meta-analysis of nicotine dependence, totaling 38,602 smokers (28,677 Europeans/European Americans and 9925 African Americans) across 15 studies. In this largest-ever GWAS meta-analysis for nicotine dependence and the largest-ever cross-ancestry GWAS meta-analysis for any smoking phenotype, we reconfirmed the well-known CHRNA5-CHRNA3-CHRNB4 genes and further yielded a novel association in the DNA methyltransferase gene DNMT3B. The intronic DNMT3B rs910083-C allele (frequency=44–77%) was associated with increased risk of nicotine dependence at P=3.7 × 10−8 (odds ratio (OR)=1.06 and 95% confidence interval (CI)=1.04–1.07 for severe vs mild dependence). The association was independently confirmed in the UK Biobank (N=48,931) using heavy vs never smoking as a proxy phenotype (P=3.6 × 10−4, OR=1.05, and 95% CI=1.02–1.08). Rs910083-C is also associated with increased risk of squamous cell lung carcinoma in the International Lung Cancer Consortium (N=60,586, meta-analysis P=0.0095, OR=1.05, and 95% CI=1.01–1.09). Moreover, rs910083-C was implicated as a cis-methylation quantitative trait locus (QTL) variant associated with higher DNMT3B methylation in fetal brain (N=166, P=2.3 × 10−26) and a cis-expression QTL variant associated with higher DNMT3B expression in adult cerebellum from the Genotype-Tissue Expression project (N=103, P=3.0 × 10−6) and the independent Brain eQTL Almanac (N=134, P=0.028). This novel DNMT3B cis-acting QTL variant highlights the importance of genetically influenced regulation in brain on the risks of nicotine dependence, heavy smoking and consequent lung cancer.
Ancient DNA and deep population structure in sub-Saharan African foragers
Multiple lines of genetic and archaeological evidence suggest that there were major demographic changes in the terminal Late Pleistocene epoch and early Holocene epoch of sub-Saharan Africa 1 – 4 . Inferences about this period are challenging to make because demographic shifts in the past 5,000 years have obscured the structures of more ancient populations 3 , 5 . Here we present genome-wide ancient DNA data for six individuals from eastern and south-central Africa spanning the past approximately 18,000 years (doubling the time depth of sub-Saharan African ancient DNA), increase the data quality for 15 previously published ancient individuals and analyse these alongside data from 13 other published ancient individuals. The ancestry of the individuals in our study area can be modelled as a geographically structured mixture of three highly divergent source populations, probably reflecting Pleistocene interactions around 80–20 thousand years ago, including deeply diverged eastern and southern African lineages, plus a previously unappreciated ubiquitous distribution of ancestry that occurs in highest proportion today in central African rainforest hunter-gatherers. Once established, this structure remained highly stable, with limited long-range gene flow. These results provide a new line of genetic evidence in support of hypotheses that have emerged from archaeological analyses but remain contested, suggesting increasing regionalization at the end of the Pleistocene epoch. DNA analysis of 6 individuals from eastern and south-central Africa spanning the past approximately 18,000 years, and of 28 previously published ancient individuals, provides genetic evidence supporting hypotheses of increasing regionalization at the end of the Pleistocene.
Genetic ancestry and population structure in the All of Us Research Program cohort
We analyzed participant genomic variant data to characterize population structure and genetic ancestry for the All of Us cohort ( n  = 297,549). There is substantial population structure in the cohort, with clusters of closely related participants interspersed among less related individuals. Participants show diverse genetic ancestry, with major contributions from European (66.4%), African (19.5%), Asian (7.6%), and American (6.3%) continental ancestry components. Participant genetic similarity clusters show group-specific ancestry, with distinct patterns of continental and subcontinental ancestry among groups. African and American ancestry are enriched in the southeast and southwest regions of the country, respectively, whereas European ancestry is more evenly distributed across the US. The diversity of All of Us participants’ genetic ancestry is negatively correlated with age; younger participants show higher levels of genetic admixture compared to older participants. Our results underscore the ancestral genetic diversity of the All of Us cohort, a crucial prerequisite for genomic health equity. Most genomics research cohorts are made up of participants of European ancestry, which limits the reach of precision medicine. Here, the authors describe the genetic diversity in the All of Us research program, which is enriched in underrepresented ancestries.
Genetic ancestry, admixture, and population structure in rural Dominica
The Caribbean is a genetically diverse region with heterogeneous admixture compositions influenced by local island ecologies, migrations, colonial conflicts, and demographic histories. The Commonwealth of Dominica is a mountainous island in the Lesser Antilles historically known to harbor communities with unique patterns of migration, mixture, and isolation. This community-based population genetic study adds biological evidence to inform post-colonial narrative histories in a Dominican horticultural village. High density single nucleotide polymorphism data paired with a previously compiled genealogy provide the first genome-wide insights on genetic ancestry and population structure in Dominica. We assessed family-based clustering, inferred global ancestry, and dated recent admixture by implementing the fastSTRUCTURE clustering algorithm, modeling graph-based migration with TreeMix, assessing patterns of linkage disequilibrium decay with ALDER, and visualizing data from Dominica with Human Genome Diversity Panel references. These analyses distinguish family-based genetic structure from variation in African, European, and indigenous Amerindian admixture proportions, and analyses of linkage disequilibrium decay estimate admixture dates 5–6 generations (~160 years) ago. African ancestry accounts for the largest mixture components, followed by European and then indigenous components; however, our global ancestry inferences are consistent with previous mitochondrial, Y chromosome, and ancestry marker data from Dominica that show uniquely higher proportions of indigenous ancestry and lower proportions of African ancestry relative to known admixture in other French- and English-speaking Caribbean islands. Our genetic results support local narratives about the community’s history and founding, which indicate that newly emancipated people settled in the steep, dense vegetation along Dominica’s eastern coast in the mid-19 th century. Strong genetic signals of post-colonial admixture and family-based structure highlight the localized impacts of colonial forces and island ecologies in this region, and more data from other groups are needed to more broadly inform on Dominica’s complex history and present diversity.