Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,589 result(s) for "Blazars"
Sort by:
The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars
The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z ~1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.
Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert
Neutrinos interact only very weakly with matter, but giant detectors have succeeded in detecting small numbers of astrophysical neutrinos. Aside from a diffuse background, only two individual sources have been identified: the Sun and a nearby supernova in 1987. A multiteam collaboration detected a high-energy neutrino event whose arrival direction was consistent with a known blazar—a type of quasar with a relativistic jet oriented directly along our line of sight. The blazar, TXS 0506+056, was found to be undergoing a gamma-ray flare, prompting an extensive multiwavelength campaign. Motivated by this discovery, the IceCube collaboration examined lower-energy neutrinos detected over the previous several years, finding an excess emission at the location of the blazar. Thus, blazars are a source of astrophysical neutrinos. Science , this issue p. 147 , p. eaat1378 A blazar has been found to be a point source of astrophysical neutrinos, emitted over several years. A high-energy neutrino event detected by IceCube on 22 September 2017 was coincident in direction and time with a gamma-ray flare from the blazar TXS 0506+056. Prompted by this association, we investigated 9.5 years of IceCube neutrino observations to search for excess emission at the position of the blazar. We found an excess of high-energy neutrino events, with respect to atmospheric backgrounds, at that position between September 2014 and March 2015. Allowing for time-variable flux, this constitutes 3.5σ evidence for neutrino emission from the direction of TXS 0506+056, independent of and prior to the 2017 flaring episode. This suggests that blazars are identifiable sources of the high-energy astrophysical neutrino flux.
Blazar spectral variability as explained by a twisted inhomogeneous jet
The spectral variability of the blazar CTA 102 during a recent extreme outburst could be explained by a twisted, inhomogeneous jet containing regions of different orientations that vary in time. A twisting firehose of photons from a blazar Blazars are a particular kind of very variable quasar, viewed from Earth down the axis of a relativistic jet—a beam of accelerated ionized matter. One possible explanation for the extreme variability in radiation flux from blazars is changes in the viewing angle. Claudia Raiteri and collaborators report observations from radio to optical wavelengths of the blazar CTA 102 during a recent extreme outburst, where its optical brightness increased by six magnitudes. They conclude that the variability they see is consistent with a twisting, inhomogeneous jet whose components change their viewing angles, like a firehose blasting out water that twists when not held. Blazars are active galactic nuclei, which are powerful sources of radiation whose central engine is located in the core of the host galaxy. Blazar emission is dominated by non-thermal radiation from a jet that moves relativistically towards us, and therefore undergoes Doppler beaming 1 . This beaming causes flux enhancement and contraction of the variability timescales, so that most blazars appear as luminous sources characterized by noticeable and fast changes in brightness at all frequencies. The mechanism that produces this unpredictable variability is under debate, but proposed mechanisms include injection, acceleration and cooling of particles 2 , with possible intervention of shock waves 3 , 4 or turbulence 5 . Changes in the viewing angle of the observed emitting knots or jet regions have also been suggested as an explanation of flaring events 6 , 7 , 8 , 9 , 10 and can also explain specific properties of blazar emission, such as intra-day variability 11 , quasi-periodicity 12 , 13 and the delay of radio flux variations relative to optical changes 14 . Such a geometric interpretation, however, is not universally accepted because alternative explanations based on changes in physical conditions—such as the size and speed of the emitting zone, the magnetic field, the number of emitting particles and their energy distribution—can explain snapshots of the spectral behaviour of blazars in many cases 15 , 16 . Here we report the results of optical-to-radio-wavelength monitoring of the blazar CTA 102 and show that the observed long-term trends of the flux and spectral variability are best explained by an inhomogeneous, curved jet that undergoes changes in orientation over time. We propose that magnetohydrodynamic instabilities 17 or rotation of the twisted jet 6 cause different jet regions to change their orientation and hence their relative Doppler factors. In particular, the extreme optical outburst of 2016–2017 (brightness increase of six magnitudes) occurred when the corresponding emitting region had a small viewing angle. The agreement between observations and theoretical predictions can be seen as further validation of the relativistic beaming theory.
Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A
Neutrinos interact only very weakly with matter, but giant detectors have succeeded in detecting small numbers of astrophysical neutrinos. Aside from a diffuse background, only two individual sources have been identified: the Sun and a nearby supernova in 1987. A multiteam collaboration detected a high-energy neutrino event whose arrival direction was consistent with a known blazar—a type of quasar with a relativistic jet oriented directly along our line of sight. The blazar, TXS 0506+056, was found to be undergoing a gamma-ray flare, prompting an extensive multiwavelength campaign. Motivated by this discovery, the IceCube collaboration examined lower-energy neutrinos detected over the previous several years, finding an excess emission at the location of the blazar. Thus, blazars are a source of astrophysical neutrinos. Science , this issue p. 147 , p. eaat1378 A high-energy neutrino was emitted by a blazar during a flare, prompting observations across the electromagnetic spectrum. Previous detections of individual astrophysical sources of neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy neutrino, IceCube-170922A, with an energy of ~290 tera–electron volts. Its arrival direction was consistent with the location of a known γ-ray blazar, TXS 0506+056, observed to be in a flaring state. An extensive multiwavelength campaign followed, ranging from radio frequencies to γ-rays. These observations characterize the variability and energetics of the blazar and include the detection of TXS 0506+056 in very-high-energy γ-rays. This observation of a neutrino in spatial coincidence with a γ-ray–emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos.
Polarized Blazar X-Rays Imply Particle Acceleration in Shocks
Most of the light from blazars, active galactic nuclei with jets of magnetized plasma that point nearly along the line of sight, is produced by high-energy particles, up to around 1 TeV. Although the jets are known to be ultimately powered by a supermassive black hole, how the particles are accelerated to such high energies has been an unanswered question. The process must be related to the magnetic field, which can be probed by observations of the polarization of light from the jets. Measurements of the radio to optical polarization—the only range available until now—probe extended regions of the jet containing particles that left the acceleration site days to years earlier, and hence do not directly explore the acceleration mechanism, as could X-ray measurements. Here we report the detection of X-ray polarization from the blazar Markarian 501 (Mrk 501). We measure an X-ray linear polarization degree Π_X of around 10%, which is a factor of around 2 higher than the value at optical wavelengths, with a polarization angle parallel to the radio jet. This points to a shock front as the source of particle acceleration and also implies that the plasma becomes increasingly turbulent with distance from the shock.
A gamma-ray determination of the Universe’s star formation history
How many stars have formed in the Universe, and when did they do so? These fundamental questions are difficult to answer because there are systematic uncertainties in converting the light we observe into the total mass of stars in galaxies. The Fermi-LAT Collaboration addressed these questions by exploiting the way that gamma rays from distant blazars propagate through intergalactic space, which depends on the total amount of light emitted by all galaxies. The collaboration found that star formation peaked about 3 billion years after the Big Bang (see the Perspective by Prandini). Although this is similar to previous estimates from optical and infrared observations, the results provide valuable confirmation because they should be affected by different systematic effects. Science , this issue p. 1031 ; see also p. 995 Intergalactic gamma rays are used to determine the star formation history of the Universe. The light emitted by all galaxies over the history of the Universe produces the extragalactic background light (EBL) at ultraviolet, optical, and infrared wavelengths. The EBL is a source of opacity for gamma rays via photon-photon interactions, leaving an imprint in the spectra of distant gamma-ray sources. We measured this attenuation using 739 active galaxies and one gamma-ray burst detected by the Fermi Large Area Telescope. This allowed us to reconstruct the evolution of the EBL and determine the star formation history of the Universe over 90% of cosmic time. Our star formation history is consistent with independent measurements from galaxy surveys, peaking at redshift z ~ 2. Upper limits of the EBL at the epoch of reionization suggest a turnover in the abundance of faint galaxies at z ~ 6.
Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event
The astrophysical sources of the extraterrestrial, very high-energy neutrinos detected by the IceCube collaboration remain to be identified. Gamma-ray (γ-ray) blazars have been predicted to yield a cumulative neutrino signal exceeding the atmospheric background above energies of 100 TeV, assuming that both the neutrinos and the γ-ray photons are produced by accelerated protons in relativistic jets. As the background spectrum falls steeply with increasing energy, the individual events with the clearest signature of being of extraterrestrial origin are those at petaelectronvolt energies. Inside the large positional-uncertainty fields of the first two petaelectronvolt neutrinos detected by IceCube, the integrated emission of the blazar population has a sufficiently high electromagnetic flux to explain the detected IceCube events, but fluences of individual objects are too low to make an unambiguous source association. Here, we report that a major outburst of the blazar PKS B1424–418 occurred in temporal and positional coincidence with a third petaelectronvolt-energy neutrino event (HESE-35) detected by IceCube. On the basis of an analysis of the full sample of γ-ray blazars in the HESE-35 field, we show that the long-term average γ-ray emission of blazars as a class is in agreement with both the measured all-sky flux of petaelectronvolt neutrinos and the spectral slope of the IceCube signal. The outburst of PKS B1424–418 provides an energy output high enough to explain the observed petaelectronvolt event, suggestive of a direct physical association. The IceCube neutrino telescope in the South Pole has observed several high-energy neutrinos of undetermined origin. Could the third detected PeV event be from blazar PKS B1424–418?