Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
484 result(s) for "Bleomycin - immunology"
Sort by:
Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage
Tissue fibrosis is a major cause of mortality that results from the deposition of matrix proteins by an activated mesenchyme. Macrophages accumulate in fibrosis, but the role of specific subgroups in supporting fibrogenesis has not been investigated in vivo. Here, we used single-cell RNA sequencing (scRNA-seq) to characterize the heterogeneity of macrophages in bleomycin-induced lung fibrosis in mice. A novel computational framework for the annotation of scRNA-seq by reference to bulk transcriptomes (SingleR) enabled the subclustering of macrophages and revealed a disease-associated subgroup with a transitional gene expression profile intermediate between monocyte-derived and alveolar macrophages. These CX3CR1 + SiglecF + transitional macrophages localized to the fibrotic niche and had a profibrotic effect in vivo. Human orthologs of genes expressed by the transitional macrophages were upregulated in samples from patients with idiopathic pulmonary fibrosis. Thus, we have identified a pathological subgroup of transitional macrophages that are required for the fibrotic response to injury. Using scRNA-seq analysis, Bhattacharya and colleagues identify a subset of profibrotic lung macrophages that have a gene expression signature intermediate between those of monocytes and alveolar macrophages.
Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4
Pulmonary fibrosis is a progressive, dysregulated response to injury culminating in compromised lung function due to excess extracellular matrix production. The heparan sulfate proteoglycan syndecan-4 is important in mediating fibroblast-matrix interactions, but its role in pulmonary fibrosis has not been explored. To investigate this issue, we used intratracheal instillation of bleomycin as a model of acute lung injury and fibrosis. We found that bleomycin treatment increased syndecan-4 expression. Moreover, we observed a marked decrease in neutrophil recruitment and an increase in both myofibroblast recruitment and interstitial fibrosis in bleomycin-treated syndecan-4-null (Sdc4-/-) mice. Subsequently, we identified a direct interaction between CXCL10, an antifibrotic chemokine, and syndecan-4 that inhibited primary lung fibroblast migration during fibrosis; mutation of the heparin-binding domain, but not the CXCR3 domain, of CXCL10 diminished this effect. Similarly, migration of fibroblasts from patients with pulmonary fibrosis was inhibited in the presence of CXCL10 protein defective in CXCR3 binding. Furthermore, administration of recombinant CXCL10 protein inhibited fibrosis in WT mice, but not in Sdc4-/- mice. Collectively, these data suggest that the direct interaction of syndecan-4 and CXCL10 in the lung interstitial compartment serves to inhibit fibroblast recruitment and subsequent fibrosis. Thus, administration of CXCL10 protein defective in CXCR3 binding may represent a novel therapy for pulmonary fibrosis.
Injection of bleomycin in newborn mice induces autoimmune sialitis that is transferred by CD4 T cells
Bleomycin (BLM) induces cellular apoptosis or necrosis by producing reactive oxygen species, and has been used to induce scleroderma in adult mice. We wondered whether BLM induces the same pathological phenotype in newborn mice as in adult mice. BLM was subcutaneously administrated to newborn BALB/c mice. At 1 month of age, BLM‐treated mice showed severe destruction of salivary glands with enlargement of nearby lymph nodes. These nodes contained CD4+ T cells and B220+cells with high expression of MHC class II molecules. In addition, autoantibodies were detected by HEp‐2 staining and western blotting. The cell transfer experiments were performed to evaluate the role of autoimmune phenomena in these pathological changes. Following the transfer of enriched CD4+ T cells to 1‐month‐old BALB/c nude mice, the salivary glands were severely damaged with CD4+ T cell and B220+ cells infiltrations. The number of T‐cell antigen receptor Vβ 8.3+ CD4+ T cells was significantly increased in BLM‐treated murine spleen. These findings will provide new insights into the causal factors of environment in autoimmunity and the relationship between autoreactive CD4+ T cells and autoantibodies.
Expression of B7–1, B7–2, and Interleukin 12 in Bleomycin–Induced Pneumopathy in Mice
Background: The bleomycin–induced pneumopathy involves a T cell–mediated immune response. T cell activation requires both antigen/MHC recognition and costimulatory signals. The CD28 receptor on T cells with its ligand B7 represents one of the most important examples of this costimulation. Interleukin 12 (IL–12) has a strong synergistic effect with the B7–1/CD28 interaction on inducing proliferation and cytokine production in T cells. Methods: In this study, we investigated the expression of B7–1, B7–2, and IL–12 in bleomycin–induced pneumopathy in mice using reverse transcription polymerase chain reaction (RT–PCR), RT in situ PCR, and immunohistochemistry. Results: We observed concurrent upregulation of B7–1, B7–2, and IL–12p40 mRNA in the lung tissues at 1 h to 7 days after bleomycin instillation into the trachea. B7–1 mRNA and protein were found in bronchiolar epithelial cells as well as macrophages, B7–2 and IL–12p40 mRNA appeared to be expressed in mononuclear cells. Conclusions: These findings indicate that T cell–mediated immune response in this model involves the upregulation of B7–1, B7–2, and IL–12p40 mRNA, and also demonstrate the aberrant expression of B7–1 in bronchiolar epithelial cells.
Uric Acid Is a Danger Signal Activating NALP3 Inflammasome in Lung Injury Inflammation and Fibrosis
Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.
Comparative Evaluation of Bleomycin- and Collagen-V-Induced Models of Systemic Sclerosis: Insights into Fibrosis and Autoimmunity for Translational Research
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by fibrosis, immune dysregulation, and vascular dysfunction, yet its pathogenesis remains incompletely understood. This study compares two widely used animal models of SSc—the bleomycin-induced fibrosis model and the collagen-V-induced autoimmune model—to evaluate their ability to replicate key disease features. In the bleomycin model, consistent cardiac fibrosis was observed across treatment groups despite variability in fibrosis in the skin and lungs, suggesting organ-specific differences in susceptibility. The collagen-V model demonstrated robust autoantibody production against collagen-V, confirming its utility in studying immune activation, though fibrosis was largely confined to the heart. While the bleomycin model excels at mimicking rapid fibrosis and is suitable for testing antifibrotic therapies, the collagen-V model provides insights into antigen-specific autoimmunity. Both models highlight the dynamic nature of fibrosis, where ECM deposition and degradation occur concurrently, complicating its use as a quantitative disease marker. Cardiac fibrosis emerged as a consistent feature in both models, emphasizing its relevance in SSc pathophysiology. Combining these models or refining their design through hybrid approaches, extended timelines, or sex and age adjustments could enhance their translational utility. These findings advance understanding of SSc mechanisms and inform therapeutic development for this challenging disease.
Induction of a distinct macrophage population and protection from lung injury and fibrosis by Notch2 blockade
Macrophages are pleiotropic and diverse cells that populate all tissues of the body. Besides tissue-specific resident macrophages such as alveolar macrophages, Kupffer cells, and microglia, multiple organs harbor at least two subtypes of other resident macrophages at steady state. During certain circumstances, like tissue insult, additional subtypes of macrophages are recruited to the tissue from the monocyte pool. Previously, a recruited macrophage population marked by expression of Spp1, Cd9, Gpnmb, Fabp5 , and Trem2 , has been described in several models of organ injury and cancer, and has been linked to fibrosis in mice and humans. Here, we show that Notch2 blockade, given systemically or locally, leads to an increase in this putative pro-fibrotic macrophage in the lung and that this macrophage state can only be adopted by monocytically derived cells and not resident alveolar macrophages. Using a bleomycin and COVID-19 model of lung injury and fibrosis, we find that the expansion of these macrophages before lung injury does not promote fibrosis but rather appears to ameliorate it. This suggests that these damage-associated macrophages are not, by themselves, drivers of fibrosis in the lung. Macrophages are pleiotropic and can have different functions and phenotypes. Here the authors show that a population of macrophages, previously described as pro-fibrotic, can be induced through Notch2 blockade and that in a mouse lung injury and fibrosis model this macrophage population does not promote inflammation or fibrosis.
PTX3 Regulation of Inflammation, Hemostatic Response, Tissue Repair, and Resolution of Fibrosis Favors a Role in Limiting Idiopathic Pulmonary Fibrosis
PTX3 is a soluble pattern recognition molecule (PRM) belonging to the humoral innate immune system, rapidly produced at inflammatory sites by phagocytes and stromal cells in response to infection or tissue injury. PTX3 interacts with microbial moieties and selected pathogens, with molecules of the complement and hemostatic systems, and with extracellular matrix (ECM) components. In wound sites, PTX3 interacts with fibrin and plasminogen and favors a timely removal of fibrin-rich ECM for an efficient tissue repair. Idiopathic Pulmonary Fibrosis (IPF) is a chronic and progressive interstitial lung disease of unknown origin, associated with excessive ECM deposition affecting tissue architecture, with irreversible loss of lung function and impact on the patient’s life quality. Maccarinelli et al. recently demonstrated a protective role of PTX3 using the bleomycin (BLM)-induced experimental model of lung fibrosis, in line with the reported role of PTX3 in tissue repair. However, the mechanisms and therapeutic potential of PTX3 in IPF remained to be investigated. Herein, we provide new insights on the possible role of PTX3 in the development of IPF and BLM-induced lung fibrosis. In mice, PTX3-deficiency was associated with worsening of the disease and with impaired fibrin removal and subsequently increased collagen deposition. In IPF patients, microarray data indicated a down-regulation of PTX3 expression, thus suggesting a potential rational underlying the development of disease. Therefore, we provide new insights for considering PTX3 as a possible target molecule underlying therapeutic intervention in IPF.
Deficiency of CRTH2, a Prostaglandin D 2 Receptor, Aggravates Bleomycin-induced Pulmonary Inflammation and Fibrosis
Chemoattractant receptor homologous with T-helper cell type 2 cells (CRTH2), a receptor for prostaglandin D , is preferentially expressed on T-helper cell type 2 lymphocytes, group 2 innate lymphoid cells, eosinophils, and basophils, and elicits the production of type 2 cytokines, including profibrotic IL-13. We hypothesized that lack of CRTH2 might protect against fibrotic lung disease, and we tested this hypothesis using a bleomycin-induced lung inflammation and fibrosis model in CRTH2-deficient (CRTH2 ) or wild-type BALB/c mice. Compared with wild-type mice, CRTH2 mice treated with bleomycin exhibited significantly higher mortality, enhanced accumulation of inflammatory cells 14-21 days after bleomycin injection, reduced pulmonary compliance, and increased levels of collagen and total protein in the lungs. These phenotypes were associated with decreased levels of IFN-γ, IL-6, IL-10, and IL-17A in BAL fluid. Adoptive transfer of splenocytes from wild-type, but not CRTH2 , mice 2 days before injection of bleomycin resolved the sustained inflammation as well as the increased collagen and protein accumulation in the lungs of CRTH2 mice. We consider that the disease model is driven by γδT cells that express CRTH2; thus, the adoptive transfer of γδT cells could ameliorate bleomycin-induced alveolar inflammation and fibrosis.
Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice
Reduced hyaluronan–TLR4 signaling in a stem cell population of the lung contributes to a lack of renewal of these cells and promotes fibrosis in patients with idiopathic pulmonary fibrosis. Successful recovery from lung injury requires the repair and regeneration of alveolar epithelial cells to restore the integrity of gas-exchanging regions within the lung and preserve organ function. Improper regeneration of the alveolar epithelium is often associated with severe pulmonary fibrosis, the latter of which involves the recruitment and activation of fibroblasts, as well as matrix accumulation. Type 2 alveolar epithelial cells (AEC2s) are stem cells in the adult lung that contribute to the lung repair process. The mechanisms that regulate AEC2 renewal are incompletely understood. We provide evidence that expression of the innate immune receptor Toll-like receptor 4 (TLR4) and the extracellular matrix glycosaminoglycan hyaluronan (HA) on AEC2s are important for AEC2 renewal, repair of lung injury and limiting the extent of fibrosis. Either deletion of TLR4 or HA synthase 2 in surfactant-protein-C-positive AEC2s leads to impaired renewal capacity, severe fibrosis and mortality. Furthermore, AEC2s from patients with severe pulmonary fibrosis have reduced cell surface HA and impaired renewal capacity, suggesting that HA and TLR4 are key contributors to lung stem cell renewal and that severe pulmonary fibrosis is the result of distal epithelial stem cell failure.