Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
108
result(s) for
"Blood–CSF barrier"
Sort by:
Choroid plexus genes for CSF production and brain homeostasis are altered in Alzheimer’s disease
by
Kant, Shawn
,
Stopa, Edward G.
,
Silverberg, Gerald D.
in
Adenosine triphosphate
,
Alzheimer's disease
,
Amyloid
2018
Background
The roles of the choroid plexus (CP) and cerebrospinal fluid (CSF) production have drawn increasing attention in Alzheimer’s disease (AD) research. Specifically, studies document markedly decreased CSF production and turnover in moderate-to-severe AD. Moreover, reduced CP function and CSF turnover lead to impaired clearance of toxic metabolites, likely promote neuroinflammation, and may facilitate neuronal death during AD progression. We analyzed CP gene expression in AD compared with control subjects, specifically considering those genes involved with CSF production and CP structural integrity.
Methods
The Brown-Merck Gene Expression Omnibus (GEO) database (CP transcripts) was mined to examine changes in gene expression in AD compared to controls with a focus on assorted genes thought to play a role in CSF production. Specifically, genes coding for ion transporters in CP epithelium (CPE) and associated enzymes like Na–K-ATPase and carbonic anhydrase, aquaporins, mitochondrial transporters/enzymes, blood–cerebrospinal fluid barrier (BCSFB) stability proteins, and pro-inflammatory mediators were selected for investigation. Data were analyzed using t test p-value and fold-change analysis conducted by the GEO2R feature of the GEO database.
Results
Significant expression changes for several genes were observed in AD CP. These included disruptions to ion transporters (e.g., the solute carrier gene SLC4A5, p = 0.004) and associated enzyme expressions (e.g., carbonic anhydrase CA4, p = 0.0001), along with decreased expression of genes involved in BCSFB integrity (e.g., claudin CLDN5, p = 0.039) and mitochondrial ATP synthesis (e.g., adenosine triphosphate ATP5L, p = 0.0004). Together all changes point to disrupted solute transport at the blood–CSF interface in AD. Increased expression of pro-inflammatory (e.g., interleukin IL1RL1, p = 0.00001) and potential neurodegenerative genes (e.g., amyloid precursor APBA3, p = 0.002) also implicate disturbed CP function.
Conclusions
Because the altered expression of numerous transcripts in AD-CP help explain decreased CSF production in AD, these findings represent a first step towards identifying novel therapeutic targets in AD.
Journal Article
Counteracting the effects of TNF receptor‐1 has therapeutic potential in Alzheimer's disease
by
De Rycke, Riet
,
Libert, Claude
,
Vandenbroucke, Roosmarijn E
in
Alzheimer Disease - genetics
,
Alzheimer Disease - metabolism
,
Alzheimer's disease
2018
Alzheimer's disease (AD) is the most common form of dementia, and neuroinflammation is an important hallmark of the pathogenesis. Tumor necrosis factor (TNF) might be detrimental in AD, though the results coming from clinical trials on anti‐TNF inhibitors are inconclusive. TNFR1, one of the TNF signaling receptors, contributes to the pathogenesis of AD by mediating neuronal cell death. The blood–cerebrospinal fluid (CSF) barrier consists of a monolayer of choroid plexus epithelial (CPE) cells, and AD is associated with changes in CPE cell morphology. Here, we report that TNF is the main inflammatory upstream mediator in choroid plexus tissue in AD patients. This was confirmed in two murine AD models: transgenic APP/PS1 mice and intracerebroventricular (icv) AβO injection. TNFR1 contributes to the morphological damage of CPE cells in AD, and TNFR1 abrogation reduces brain inflammation and prevents blood–CSF barrier impairment. In APP/PS1 transgenic mice, TNFR1 deficiency ameliorated amyloidosis. Ultimately, genetic and pharmacological blockage of TNFR1 rescued from the induced cognitive impairments. Our data indicate that TNFR1 is a promising therapeutic target for AD treatment.
Synopsis
Increased TNF/TNFR1 signaling plays a detrimental role in Alzheimer's disease pathology and is associated with morphological alterations at the choroid plexus in patients and mice, and neuroinflammation. Blocking TNFR1 signaling prevents cognitive decline in Alzheimer's disease mouse models.
TNF/TNFR1 signaling is activated in the choroid plexus of late‐stage Alzheimer's disease patients.
Increased TNFR1 signaling contributes to morphological alterations in choroid plexus epithelial cells.
TNFR1 deficiency prevents neuroinflammation and amyloidogenesis, and reduces microgliosis in Alzheimer's disease mouse models.
Genetic and pharmacological blockage of TNFR1 signaling prevents cognitive decline in Alzheimer's disease mouse models.
Graphical Abstract
Increased TNF/TNFR1 signaling plays a detrimental role in Alzheimer's disease pathology and is associated with morphological alterations at the choroid plexus in patients and mice, and neuroinflammation. Blocking TNFR1 signaling prevents cognitive decline in Alzheimer's disease mouse models.
Journal Article
Outer brain barriers in rat and human development
by
Møllgård, Kjeld
,
Brøchner, Christian B.
,
Holst, Camilla B.
in
Arachnoid
,
arachnoid blood-CSF barrier
,
Blood-brain barrier
2015
Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.
Journal Article
Comparative transcriptomics of choroid plexus in Alzheimer’s disease, frontotemporal dementia and Huntington’s disease: implications for CSF homeostasis
2018
Background
In Alzheimer’s disease, there are striking changes in CSF composition that relate to altered choroid plexus (CP) function. Studying CP tissue gene expression at the blood–cerebrospinal fluid barrier could provide further insight into the epithelial and stromal responses to neurodegenerative disease states.
Methods
Transcriptome-wide Affymetrix microarrays were used to determine disease-related changes in gene expression in human CP. RNA from post-mortem samples of the entire lateral ventricular choroid plexus was extracted from 6 healthy controls (Ctrl), 7 patients with advanced (Braak and Braak stage III–VI) Alzheimer’s disease (AD), 4 with frontotemporal dementia (FTD) and 3 with Huntington’s disease (HuD). Statistics and agglomerative clustering were accomplished with MathWorks, MatLab; and gene set annotations by comparing input sets to GeneGo (
http://www.genego.com
) and Ingenuity (
http://www.ingenuity.com
) pathway sets. Bonferroni-corrected hypergeometric p-values of < 0.1 were considered a significant overlap between sets.
Results
Pronounced differences in gene expression occurred in CP of advanced AD patients vs. Ctrls. Metabolic and immune-related pathways including acute phase response, cytokine, cell adhesion, interferons, and JAK-STAT as well as mTOR were significantly enriched among the genes upregulated. Methionine degradation, claudin-5 and protein translation genes were downregulated. Many gene expression changes in AD patients were observed in FTD and HuD (e.g., claudin-5, tight junction downregulation), but there were significant differences between the disease groups. In AD and HuD (but not FTD), several neuroimmune-modulating interferons were significantly enriched (e.g., in AD: IFI-TM1, IFN-AR1, IFN-AR2, and IFN-GR2). AD-associated expression changes, but not those in HuD and FTD, were enriched for upregulation of VEGF signaling and immune response proteins, e.g., interleukins. HuD and FTD patients distinctively displayed upregulated cadherin-mediated adhesion.
Conclusions
Our transcript data for human CP tissue provides genomic and mechanistic insight for differential expression in AD vs. FTD vs. HuD for stromal as well as epithelial components. These choroidal transcriptome characterizations elucidate immune activation, tissue functional resiliency, and CSF metabolic homeostasis. The BCSFB undergoes harmful, but also important functional and adaptive changes in neurodegenerative diseases; accordingly, the enriched JAK-STAT and mTOR pathways, respectively, likely help the CP in adaptive transcription and epithelial repair and/or replacement when harmed by neurodegeneration pathophysiology. We anticipate that these precise CP translational data will facilitate pharmacologic/transgenic therapies to alleviate dementia.
Journal Article
The Reibergram for immunoglobulin A in dogs: Evaluation of intrathecal IgA synthesis using a quotient graph in dogs with neurological diseases
by
Püschel, Mirja L.
,
Carlson, Regina
,
Nessler, Jasmin
in
Albumin
,
albumins
,
Albumins - cerebrospinal fluid
2023
Background Increased cerebrospinal fluid (CSF) protein concentration is a common finding in neurological diseases of dogs. Distinguishing between intrathecally‐produced proteins and proteins that have passed the blood‐CSF barrier because of barrier disruption facilitates diagnosis. Albumin is a microprotein mainly produced extrathecally that can be used as a reference marker for blood‐CSF barrier dysfunction. Objectives Develop a quotient graph based on the CSF/serum quotient of albumin and immunoglobulin A (IgA; Reibergram) to visualize intrathecal IgA synthesis and blood‐CSF barrier dysfunction. Animals and Methods Retrospective single‐center cohort study. A hyperbolic function was developed using data from 6 healthy Beagles and 38 dogs with neurological diseases in which an isolated blood‐CSF barrier dysfunction was expected. The function was validated using data from 10 dogs with expected intrathecal IgA synthesis and was visualized as a quotient graph. Finally, the graph was used to evaluate data of 118 dogs with various neurological diseases. Results Within the Reibergram, the function QLimIgA=0.13QAlb2+11.9·10−6−1.01·10−3 describes the upper values of physiological IgA quotients. It detects diseases with expected intrathecal IgA synthesis with higher sensitivity (85%) and specificity (89%) than the IgA index. The upper value of the physiological albumin quotient is 2.22 and detects diseases with expected blood‐CSF barrier dysfunction (sensitivity: 81%; specificity: 88%). Conclusion and Clinical Importance The canine Reibergram can detect blood‐CSF barrier dysfunction and intrathecal IgA synthesis in the majority of cases. The graphical visualization simplifies data evaluation and makes it a feasible tool in routine CSF diagnostic testing.
Journal Article
Chemokine CXCL13 in serum, CSF and blood–CSF barrier function: evidence of compartment restriction
2020
Background and purpose
Elevation of the chemokine CXCL13 in CSF frequently occurs during active and acute CNS inflammatory processes and presumably is associated with B cell-related immune activation. Elevation levels, however, vary a lot and “leaking” of CXCL13 from blood across dysfunctional brain barriers is a possible source. The aim was to clarify the relation between CXCL13 concentrations in CSF, CXCL13 concentrations in serum and blood–CSF barrier (BCSFB) function for a correct interpretation of the intrathecal origin of CXCL13.
Methods
We retrospectively analyzed CXCL13 of banked CSF/serum samples (n = 69) selected from patient records and categorized the CSF CXCL13 elevations as CXCL13 negative (< 30 pg/ml), low (30–100 pg/ml), medium (101–250 pg/ml), or high (> 250 pg/ml). CXCL13 concentrations in CSF and serum and the corresponding CSF/serum CXCL13 quotients (Qcxcl13) were compared to CSF/serum albumin quotients (QAlb) as a measure for BCSFB function. The CXCL13 negative category included two subgroups with normal and dysfunctional BCSFB.
Results
Serum CXCL13 concentrations were similar across categories with median levels around 100 pg/ml but differed between individuals (29 to > 505 pg/ml). Despite clear evidence in serum, CXCL13 was detectable only at trace amounts (medians 3.5 and 7.5 pg/ml) in CSF of the two CXCL13 negative subgroups irrespective of a normal or pathological QAlb. Moreover, we found no association between CSF and serum CXCL13 levels or between QAlb and CSF CXCL13 levels in any of the CSF CXCL13-delineated categories. CXCL13 apparently does not “leak” from blood into CSF. This implies an intrathecal origin also for low CSF CXCL13 levels and a caveat for analyzing the Qcxcl13, because higher serum than CSF concentrations arithmetically depress the Qcxcl13 resulting in misleadingly low CSF/serum quotients.
Conclusion
We demonstrated that CXCL13 does not cross from blood into CSF, not even during severe BCSFB dysfunction. CSF CXCL13 elevations therefore most likely always are CNS-derived, which highlights their relevance as indicator of inflammatory CNS processes. We recommend data should not be corrected for BCSFB permeability (QAlb) and not to calculate CSF/serum quotients for CXCL13 as these may introduce error.
Journal Article
Current research into brain barriers and the delivery of therapeutics for neurological diseases: a report on CNS barrier congress London, UK, 2017
by
Wicher, Krzysztof B.
,
Campbell, Matthew
,
Brodin, Birger
in
Antibody therapy
,
Biological products
,
Biomedical and Life Sciences
2017
This is a report on the CNS barrier congress held in London, UK, March 22–23rd 2017 and sponsored by Kisaco Research Ltd. The two 1-day sessions were chaired by John Greenwood and Margareta Hammarlund-Udenaes, respectively, and each session ended with a discussion led by the chair. Speakers consisted of invited academic researchers studying the brain barriers in relation to neurological diseases and industry researchers studying new methods to deliver therapeutics to treat neurological diseases. We include here brief reports from the speakers.
Journal Article
Living on the Edge of the CNS: Meninges Cell Diversity in Health and Disease
by
Como, Christina
,
Siegenthaler, Julie A.
,
Derk, Julia
in
Adherens junctions
,
Arachnoid
,
arachnoid barrier
2021
The meninges are the fibrous covering of the central nervous system (CNS) which contain vastly heterogeneous cell types within its three layers (dura, arachnoid, and pia). The dural compartment of the meninges, closest to the skull, is predominantly composed of fibroblasts, but also includes fenestrated blood vasculature, an elaborate lymphatic system, as well as immune cells which are distinct from the CNS. Segregating the outer and inner meningeal compartments is the epithelial-like arachnoid barrier cells, connected by tight and adherens junctions, which regulate the movement of pathogens, molecules, and cells into and out of the cerebral spinal fluid (CSF) and brain parenchyma. Most proximate to the brain is the collagen and basement membrane-rich pia matter that abuts the glial limitans and has recently be shown to have regional heterogeneity within the developing mouse brain. While the meninges were historically seen as a purely structural support for the CNS and protection from trauma, the emerging view of the meninges is as an essential interface between the CNS and the periphery, critical to brain development, required for brain homeostasis, and involved in a variety of diseases. In this review, we will summarize what is known regarding the development, specification, and maturation of the meninges during homeostatic conditions and discuss the rapidly emerging evidence that specific meningeal cell compartments play differential and important roles in the pathophysiology of a myriad of diseases including: multiple sclerosis, dementia, stroke, viral/bacterial meningitis, traumatic brain injury, and cancer. We will conclude with a list of major questions and mechanisms that remain unknown, the study of which represent new, future directions for the field of meninges biology.
Journal Article
Cerebrospinal fluid findings in COVID-19: a multicenter study of 150 lumbar punctures in 127 patients
2022
Background
Comprehensive data on the cerebrospinal fluid (CSF) profile in patients with COVID-19 and neurological involvement from large-scale multicenter studies are missing so far.
Objective
To analyze systematically the CSF profile in COVID-19.
Methods
Retrospective analysis of 150 lumbar punctures in 127 patients with PCR-proven COVID-19 and neurological symptoms seen at 17 European university centers
Results
The most frequent pathological finding was blood-CSF barrier (BCB) dysfunction (median QAlb 11.4 [6.72–50.8]), which was present in 58/116 (50%) samples from patients without pre-/coexisting CNS diseases (group I). QAlb remained elevated > 14d (47.6%) and even > 30d (55.6%) after neurological onset. CSF total protein was elevated in 54/118 (45.8%) samples (median 65.35 mg/dl [45.3–240.4]) and strongly correlated with QAlb. The CSF white cell count (WCC) was increased in 14/128 (11%) samples (mostly lympho-monocytic; median 10 cells/µl, > 100 in only 4). An albuminocytological dissociation (ACD) was found in 43/115 (37.4%) samples. CSF
l
-lactate was increased in 26/109 (24%; median 3.04 mmol/l [2.2–4]). CSF-IgG was elevated in 50/100 (50%), but was of peripheral origin, since QIgG was normal in almost all cases, as were QIgA and QIgM. In 58/103 samples (56%) pattern 4 oligoclonal bands (OCB) compatible with systemic inflammation were present, while CSF-restricted OCB were found in only 2/103 (1.9%). SARS-CoV-2-CSF-PCR was negative in 76/76 samples. Routine CSF findings were normal in 35%. Cytokine levels were frequently elevated in the CSF (often associated with BCB dysfunction) and serum, partly remaining positive at high levels for weeks/months (939 tests). Of note, a positive SARS-CoV-2-IgG-antibody index (AI) was found in 2/19 (10.5%) patients which was associated with unusually high WCC in both of them and a strongly increased interleukin-6 (IL-6) index in one (not tested in the other). Anti-neuronal/anti-glial autoantibodies were mostly absent in the CSF and serum (1509 tests). In samples from patients with pre-/coexisting CNS disorders (group II [
N
= 19]; including multiple sclerosis, JC-virus-associated immune reconstitution inflammatory syndrome, HSV/VZV encephalitis/meningitis, CNS lymphoma, anti-Yo syndrome, subarachnoid hemorrhage), CSF findings were mostly representative of the respective disease.
Conclusions
The CSF profile in COVID-19 with neurological symptoms is mainly characterized by BCB disruption in the absence of intrathecal inflammation, compatible with cerebrospinal endotheliopathy. Persistent BCB dysfunction and elevated cytokine levels may contribute to both acute symptoms and ‘long COVID’. Direct infection of the CNS with SARS-CoV-2, if occurring at all, seems to be rare. Broad differential diagnostic considerations are recommended to avoid misinterpretation of treatable coexisting neurological disorders as complications of COVID-19.
Journal Article
Cerebrospinal fluid production by the choroid plexus: a century of barrier research revisited
by
Zeuthen, Thomas
,
Keep, Richard F.
,
MacAulay, Nanna
in
Biological Transport
,
Biomedical and Life Sciences
,
Biomedicine
2022
Cerebrospinal fluid (CSF) envelops the brain and fills the central ventricles. This fluid is continuously replenished by net fluid extraction from the vasculature by the secretory action of the choroid plexus epithelium residing in each of the four ventricles. We have known about these processes for more than a century, and yet the molecular mechanisms supporting this fluid secretion remain unresolved. The choroid plexus epithelium secretes its fluid in the absence of a trans-epithelial osmotic gradient, and, in addition, has an inherent ability to secrete CSF against an osmotic gradient. This paradoxical feature is shared with other ‘leaky’ epithelia. The assumptions underlying the classical
standing gradient
hypothesis await experimental support and appear to not suffice as an explanation of CSF secretion. Here, we suggest that the elusive local hyperosmotic compartment resides within the membrane transport proteins themselves. In this manner, the battery of plasma membrane transporters expressed in choroid plexus are proposed to sustain the choroidal CSF secretion independently of the prevailing bulk osmotic gradient.
Journal Article