Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6,185
result(s) for
"Blood Platelets - physiology"
Sort by:
Microenvironmental regulation of tumour angiogenesis
by
Biziato, Daniela
,
De Palma, Michele
,
Petrova, Tatiana V.
in
631/67/2328
,
631/67/327
,
631/67/580
2017
Key Points
Malignant progression of benign tumours is typically associated with an angiogenic switch — the transition from a quiescent to a proliferative vasculature. The
de novo
recruitment of various innate immune cells was shown to trigger the angiogenic switch in mouse tumour models.
Macrophages are important pro-angiogenic cells in the tumour microenvironment. They promote tumour angiogenesis mainly by secreting pro-angiogenic growth factors and facilitating the degradation of the perivascular extracellular matrix.
Neutrophils and immature myeloid cells have important roles during the initial angiogenic switch in experimental tumour models. They were also found to sustain tumour revascularization in the context of anti-angiogenic therapy.
B cells and T cells may either promote or limit tumour angiogenesis depending on the specific subtype and activation state. In the context of immunotherapy, they may induce the regression of tumour blood vessels.
Tumour blood vessels typically display scant pericyte coverage. However, pericytes provide pro-survival cues to angiogenic blood vessels, and their pharmacological targeting improves tumour response to anti-angiogenic therapy.
Cancer-associated fibroblasts produce the extracellular matrix and are an important source of pro-angiogenic factors and myeloid cell chemoattractants in the tumour microenvironment.
Adipocytes stimulate peri-tumoural angiogenesis by secreting pro-inflammatory and pro-angiogenic cytokines, and by releasing fatty acids that are consumed by angiogenic endothelial cells.
The extracellular matrix conveys both pro-angiogenic and angiostatic signals to tumour blood vessels.
The metabolic properties of cancer cells and tumour-associated stromal cells influence angiogenesis in many ways (for example, by regulating glucose bioavailability to angiogenic blood vessels).
Vascular heterogeneity is a hallmark of cancer and is determined by multiple factors, including the specific organ and tissue in which the tumour arises, the composition of tumour-associated stromal cells, as well as the nature, diversity and relative abundance of pro- and anti-angiogenic mediators.
Tumour-associated stromal cells modulate tumour responses to anti-angiogenic therapy.
This Review discusses the extrinsic regulation of angiogenesis by the tumour microenvironment, highlighting potential vulnerabilities that could be targeted to improve the applicability and reach of anti-angiogenic cancer therapies.
Tumours display considerable variation in the patterning and properties of angiogenic blood vessels, as well as in their responses to anti-angiogenic therapy. Angiogenic programming of neoplastic tissue is a multidimensional process regulated by cancer cells in concert with a variety of tumour-associated stromal cells and their bioactive products, which encompass cytokines and growth factors, the extracellular matrix and secreted microvesicles. In this Review, we discuss the extrinsic regulation of angiogenesis by the tumour microenvironment, highlighting potential vulnerabilities that could be targeted to improve the applicability and reach of anti-angiogenic cancer therapies.
Journal Article
ROS in Platelet Biology: Functional Aspects and Methodological Insights
by
Vaccarezza, Mauro
,
Galli, Daniela
,
Pozzi, Giulia
in
Animals
,
Apoptosis - physiology
,
Atherosclerosis
2020
Reactive oxygen species (ROS) and mitochondria play a pivotal role in regulating platelet functions. Platelet activation determines a drastic change in redox balance and in platelet metabolism. Indeed, several signaling pathways have been demonstrated to induce ROS production by NAPDH oxidase (NOX) and mitochondria, upon platelet activation. Platelet-derived ROS, in turn, boost further ROS production and consequent platelet activation, adhesion and recruitment in an auto-amplifying loop. This vicious circle results in a platelet procoagulant phenotype and apoptosis, both accounting for the high thrombotic risk in oxidative stress-related diseases. This review sought to elucidate molecular mechanisms underlying ROS production upon platelet activation and the effects of an altered redox balance on platelet function, focusing on the main advances that have been made in platelet redox biology. Furthermore, given the increasing interest in this field, we also describe the up-to-date methods for detecting platelets, ROS and the platelet bioenergetic profile, which have been proposed as potential disease biomarkers.
Journal Article
Normal platelet function
2017
Platelets play an important role in the vessel. Following their formation from megakaryocytes, platelets exist in circulation for 5–7 days and primarily function as regulators of hemostasis and thrombosis. Following vascular insult or injury, platelets become activated in the blood resulting in adhesion to the exposed extracellular matrix underlying the endothelium, formation of a platelet plug, and finally formation and consolidation of a thrombus consisting of both a core and shell. In pathological conditions, platelets are essential for formation of occlusive thrombus formation and as a result are the primary target for prevention of arterial thrombus formation. In addition to regulation of hemostasis in the vessel, platelets have also been shown to play an important role in innate immunity as well as regulation of tumor growth and extravasations in the vessel. These primary functions of the platelet represent its normal function and versatility in circulation.
Journal Article
Platelet Aggregometry Testing: Molecular Mechanisms, Techniques and Clinical Implications
by
Feher, Gergely
,
Kesmarky, Gabor
,
Tibold, Antal
in
Blood platelets
,
Blood Platelets - drug effects
,
Blood Platelets - metabolism
2017
Platelets play a fundamental role in normal hemostasis, while their inherited or acquired dysfunctions are involved in a variety of bleeding disorders or thrombotic events. Several laboratory methodologies or point-of-care testing methods are currently available for clinical and experimental settings. These methods describe different aspects of platelet function based on platelet aggregation, platelet adhesion, the viscoelastic properties during clot formation, the evaluation of thromboxane metabolism or certain flow cytometry techniques. Platelet aggregometry is applied in different clinical settings as monitoring response to antiplatelet therapies, the assessment of perioperative bleeding risk, the diagnosis of inherited bleeding disorders or in transfusion medicine. The rationale for platelet function-driven antiplatelet therapy was based on the result of several studies on patients undergoing percutaneous coronary intervention (PCI), where an association between high platelet reactivity despite P2Y12 inhibition and ischemic events as stent thrombosis or cardiovascular death was found. However, recent large scale randomized, controlled trials have consistently failed to demonstrate a benefit of personalised antiplatelet therapy based on platelet function testing.
Journal Article
Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry
by
Perretti, Mauro
,
Headland, Sarah E
,
Jones, Hefin R
in
Blood Coagulation - physiology
,
Blood Platelets - cytology
,
Blood Platelets - physiology
2014
Interest in extracellular vesicle biology has exploded in the past decade, since these microstructures seem endowed with multiple roles, from blood coagulation to inter-cellular communication in pathophysiology. In order for microparticle research to evolve as a preclinical and clinical tool, accurate quantification of microparticle levels is a fundamental requirement, but their size and the complexity of sample fluids present major technical challenges. Flow cytometry is commonly used, but suffers from low sensitivity and accuracy. Use of Amnis ImageStream(X) Mk II imaging flow cytometer afforded accurate analysis of calibration beads ranging from 1 μm to 20 nm; and microparticles, which could be observed and quantified in whole blood, platelet-rich and platelet-free plasma and in leukocyte supernatants. Another advantage was the minimal sample preparation and volume required. Use of this high throughput analyzer allowed simultaneous phenotypic definition of the parent cells and offspring microparticles along with real time microparticle generation kinetics. With the current paucity of reliable techniques for the analysis of microparticles, we propose that the ImageStream(X) could be used effectively to advance this scientific field.
Journal Article
Mean Platelet Volume (MPV): New Perspectives for an Old Marker in the Course and Prognosis of Inflammatory Conditions
by
Korniluk, Aleksandra
,
Kamińska, Joanna
,
Koper-Lenkiewicz, Olga M.
in
Arthritis
,
Automation
,
Biomarkers
2019
Platelet size has been demonstrated to reflect platelet activity and seems to be a useful predictive and prognostic biomarker of cardiovascular events. It is associated with a variety of prothrombotic and proinflammatory diseases. The aim is a review of literature reports concerning changes in the mean platelet volume (MPV) and its possible role as a biomarker in inflammatory processes and neoplastic diseases. PubMed database was searched for sources using the following keywords: platelet activation, platelet count, mean platelet volume and: inflammation, cancer/tumor, cardiovascular diseases, myocardial infarction, diabetes, lupus disease, rheumatoid arthritis, tuberculosis, ulcerative colitis, renal disease, pulmonary disease, influencing factors, age, gender, genetic factors, oral contraceptives, smoking, lifestyle, methods, standardization, and hematological analyzer. Preference was given to the sources which were published within the past 20 years. Increased MPV was observed in cardiovascular diseases, cerebral stroke, respiratory diseases, chronic renal failure, intestine diseases, rheumatoid diseases, diabetes, and various cancers. Decreased MPV was noted in tuberculosis during disease exacerbation, ulcerative colitis, SLE in adult, and different neoplastic diseases. The study of MPV can provide important information on the course and prognosis in many inflammatory conditions. Therefore, from the clinical point of view, it would be interesting to establish an MPV cut-off value indicating the intensity of inflammatory process, presence of the disease, increased risk of disease development, increased risk of thrombotic complications, increased risk of death, and patient’s response on applied treatment. Nevertheless, this aspect of MPV evaluation allowing its use in clinical practice is limited and requires further studies.
Journal Article
Anticoagulant action of low, physiologic, and high albumin levels in whole blood
2017
Albumin is the most abundant plasma protein. Critical illness is often associated with altered, predominately decreased, serum albumin levels. This hypoalbuminaemia is usually corrected by administration of exogenous albumin. This study aimed to track the concentration-dependent influence of albumin on blood coagulation in vitro. Whole blood (WB) samples from 25 volunteers were prepared to contain low (19.3 ± 7.7 g/L), physiological (45.2 ± 7.8 g/L), and high (67.5 ± 18.1 g/L) levels of albumin. Haemostatic profiling was performed using a platelet function analyzer (PFA) 200, impedance aggregometry, a Cone and Platelet analyzer (CPA), calibrated automated thrombogram, and thrombelastometry (TEM). Platelet aggregation-associated ATP release was assessed via HPLC analysis. In the low albumin group, when compared to the physiological albumin group, we found: i) shortened PFA 200-derived closure times indicating increased primary haemostasis; ii) increased impedance aggregometry-derived amplitudes, slopes, ATP release, as well as CPA-derived average size indicating improved platelet aggregation; iii) increased TEM-derived maximum clot firmness and alpha angles indicating enhanced clot formation. TEM measurements indicated impaired clot formation in the high albumin group compared with the physiological albumin group. Thus, albumin exerted significant anticoagulant action. Therefore, low albumin levels, often present in cancer or critically ill patients, might contribute to the frequently occurring venous thromboembolism.
Journal Article
An Insight into Recent Advances on Platelet Function in Health and Disease
by
Kim, Sanggu
,
Chaudhary, Preeti Kumari
,
Kim, Soochong
in
Angiogenesis
,
Atherosclerosis
,
Blood clots
2022
Platelets play a variety of roles in vascular biology and are best recognized as primary hemostasis and thrombosis mediators. Platelets have a large number of receptors and secretory molecules that are required for platelet functionality. Upon activation, platelets release multiple substances that have the ability to influence both physiological and pathophysiological processes including inflammation, tissue regeneration and repair, cancer progression, and spreading. The involvement of platelets in the progression and seriousness of a variety of disorders other than thrombosis is still being discovered, especially in the areas of inflammation and the immunological response. This review represents an integrated summary of recent advances on the function of platelets in pathophysiology that connects hemostasis, inflammation, and immunological response in health and disease and suggests that antiplatelet treatment might be used for more than only thrombosis.
Journal Article
Platelets mediate inflammatory monocyte activation by SARS-CoV-2 spike protein
2022
Infection with SARS-CoV-2, the causative agent of COVID-19, causes mild to moderate disease in most patients but carries a risk of morbidity and mortality. Seriously affected individuals manifest disorders of hemostasis and a cytokine storm, but it is not understood how these manifestations of severe COVID-19 are linked. Here, we showed that the SARS-CoV-2 spike protein engaged the CD42b receptor to activate platelets via 2 distinct signaling pathways and promoted platelet-monocyte communication through the engagement of P selectin/PGSL-1 and CD40L/CD40, which led to proinflammatory cytokine production by monocytes. These results explain why hypercoagulation, monocyte activation, and a cytokine storm are correlated in patients severely affected by COVID-19 and suggest a potential target for therapeutic intervention.
Journal Article
Contractile forces in platelet aggregates under microfluidic shear gradients reflect platelet inhibition and bleeding risk
2019
Platelets contract forcefully after their activation, contributing to the strength and stability of platelet aggregates and fibrin clots during blood coagulation. Viscoelastic approaches can be used to assess platelet-induced clot strengthening, but they require thrombin and fibrin generation and are unable to measure platelet forces directly. Here, we report a rapid, microfluidic approach for measuring the contractile force of platelet aggregates for the detection of platelet dysfunction. We find that platelet forces are significantly reduced when blood samples are treated with inhibitors of myosin, GPIb-IX-V, integrin α
IIb
β
3,
P2Y
12
, or thromboxane generation. Clinically, we find that platelet forces are measurably lower in cardiology patients taking aspirin. We also find that measuring platelet forces can identify Emergency Department trauma patients who subsequently require blood transfusions. Together, these findings indicate that microfluidic quantification of platelet forces may be a rapid and useful approach for monitoring both antiplatelet therapy and traumatic bleeding risk.
Platelet aggregates generate contractile forces that contribute to their cohesion and adhesion. Here, Ting et al. develop a microfluidic device to measure contractile forces generated by platelet aggregates, and find it can detect the response of platelets to pharmacological agents and predict bleeding risk in trauma patients.
Journal Article