Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
58,114
result(s) for
"Blood platelets"
Sort by:
Platelet biology and functions: new concepts and clinical perspectives
2019
Platelets — blood cells continuously produced from megakaryocytes mainly in the bone marrow — are implicated not only in haemostasis and arterial thrombosis, but also in other physiological and pathophysiological processes. This Review describes current evidence for the heterogeneity in platelet structure, age, and activation properties, with consequences for a diversity of platelet functions. Signalling processes of platelet populations involved in thrombus formation with ongoing coagulation are well understood. Genetic approaches have provided information on multiple genes related to normal haemostasis, such as those encoding receptors and signalling or secretory proteins, that determine platelet count and/or responsiveness. As highly responsive and secretory cells, platelets can alter the environment through the release of growth factors, chemokines, coagulant factors, RNA species, and extracellular vesicles. Conversely, platelets will also adapt to their environment. In disease states, platelets can be positively primed to reach a pre-activated condition. At the inflamed vessel wall, platelets interact with leukocytes and the coagulation system, interactions mediating thromboinflammation. With current antiplatelet therapies invariably causing bleeding as an undesired adverse effect, novel therapies can be more beneficial if directed against specific platelet responses, populations, interactions, or priming conditions. On the basis of these novel concepts and processes, we discuss several initiatives to target platelets therapeutically.
Journal Article
Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease
2017
Human actin-related protein 2/3 complex (Arp2/3), required for actin filament branching, has two ARPC1 component isoforms, with ARPC1B prominently expressed in blood cells. Here we show in a child with microthrombocytopenia, eosinophilia and inflammatory disease, a homozygous frameshift mutation in
ARPC1B
(p.Val91Trpfs*30). Platelet lysates reveal no ARPC1B protein and greatly reduced Arp2/3 complex. Missense
ARPC1B
mutations are identified in an unrelated patient with similar symptoms and ARPC1B deficiency. ARPC1B-deficient platelets are microthrombocytes similar to those seen in Wiskott–Aldrich syndrome that show aberrant spreading consistent with loss of Arp2/3 function. Knockout of
ARPC1B
in megakaryocytic cells results in decreased proplatelet formation, and as observed in platelets from patients, increased ARPC1A expression. Thus loss of ARPC1B produces a unique set of platelet abnormalities, and is associated with haematopoietic/immune symptoms affecting cell lineages where this isoform predominates. In agreement with recent experimental studies, our findings suggest that ARPC1 isoforms are not functionally interchangeable.
ARPC1B is a component of the actin-related protein 2/3 complex (Arp2/3), which is required for actin filament branching. Kahr
et al
. show that ARPC1B deficiency in humans is associated with severe multisystem disease that includes platelet abnormalities, eosinophilia, eczema and other indicators of immune disease.
Journal Article
Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation
2021
The core pathology of coronavirus disease 2019 (COVID-19) is infection of airway cells by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that results in excessive inflammation and respiratory disease, with cytokine storm and acute respiratory distress syndrome implicated in the most severe cases. Thrombotic complications are a major cause of morbidity and mortality in patients with COVID-19. Patients with pre-existing cardiovascular disease and/or traditional cardiovascular risk factors, including obesity, diabetes mellitus, hypertension and advanced age, are at the highest risk of death from COVID-19. In this Review, we summarize new lines of evidence that point to both platelet and endothelial dysfunction as essential components of COVID-19 pathology and describe the mechanisms that might account for the contribution of cardiovascular risk factors to the most severe outcomes in COVID-19. We highlight the distinct contributions of coagulopathy, thrombocytopathy and endotheliopathy to the pathogenesis of COVID-19 and discuss potential therapeutic strategies in the management of patients with COVD-19. Harnessing the expertise of the biomedical and clinical communities is imperative to expand the available therapeutics beyond anticoagulants and to target both thrombocytopathy and endotheliopathy. Only with such collaborative efforts can we better prepare for further waves and for future coronavirus-related pandemics.This Review summarizes the latest evidence indicating that platelet and endothelial dysfunction are essential components of COVID-19 pathology, describes the potential mechanisms underlying the contribution of cardiovascular risk factors to the most severe outcomes in COVID-19, and highlights the roles of coagulopathy, thrombocytopathy and endotheliopathy in COVID-19 pathogenesis.
Journal Article
COVID-19 induces a hyperactive phenotype in circulating platelets
by
Cullen, Steven
,
Kelliher, Sarah
,
Maguire, Patricia B.
in
Activation
,
Adenosine Triphosphate - metabolism
,
Aged
2021
Coronavirus Disease 2019 (COVID-19), caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has affected over 30 million globally to date. Although high rates of venous thromboembolism and evidence of COVID-19-induced endothelial dysfunction have been reported, the precise aetiology of the increased thrombotic risk associated with COVID-19 infection remains to be fully elucidated. Therefore, we assessed clinical platelet parameters and circulating platelet activity in patients with severe and nonsevere COVID-19. An assessment of clinical blood parameters in patients with severe COVID-19 disease (requiring intensive care), patients with nonsevere disease (not requiring intensive care), general medical in-patients without COVID-19, and healthy donors was undertaken. Platelet function and activity were also assessed by secretion and specific marker analysis. We demonstrated that routine clinical blood parameters including increased mean platelet volume (MPV) and decreased platelet:neutrophil ratio are associated with disease severity in COVID-19 upon hospitalisation and intensive care unit (ICU) admission. Strikingly, agonist-induced ADP release was 30- to 90-fold higher in COVID-19 patients compared with hospitalised controls and circulating levels of platelet factor 4 (PF4), soluble P-selectin (sP-selectin), and thrombopoietin (TPO) were also significantly elevated in COVID-19. This study shows that distinct differences exist in routine full blood count and other clinical laboratory parameters between patients with severe and nonsevere COVID-19. Moreover, we have determined all COVID-19 patients possess hyperactive circulating platelets. These data suggest abnormal platelet reactivity may contribute to hypercoagulability in COVID-19 and confirms the role that platelets/clotting has in determining the severity of the disease and the complexity of the recovery path.
Journal Article
Platelet Aggregometry Testing: Molecular Mechanisms, Techniques and Clinical Implications
by
Feher, Gergely
,
Kesmarky, Gabor
,
Tibold, Antal
in
Blood platelets
,
Blood Platelets - drug effects
,
Blood Platelets - metabolism
2017
Platelets play a fundamental role in normal hemostasis, while their inherited or acquired dysfunctions are involved in a variety of bleeding disorders or thrombotic events. Several laboratory methodologies or point-of-care testing methods are currently available for clinical and experimental settings. These methods describe different aspects of platelet function based on platelet aggregation, platelet adhesion, the viscoelastic properties during clot formation, the evaluation of thromboxane metabolism or certain flow cytometry techniques. Platelet aggregometry is applied in different clinical settings as monitoring response to antiplatelet therapies, the assessment of perioperative bleeding risk, the diagnosis of inherited bleeding disorders or in transfusion medicine. The rationale for platelet function-driven antiplatelet therapy was based on the result of several studies on patients undergoing percutaneous coronary intervention (PCI), where an association between high platelet reactivity despite P2Y12 inhibition and ischemic events as stent thrombosis or cardiovascular death was found. However, recent large scale randomized, controlled trials have consistently failed to demonstrate a benefit of personalised antiplatelet therapy based on platelet function testing.
Journal Article
Anticoagulant action of low, physiologic, and high albumin levels in whole blood
2017
Albumin is the most abundant plasma protein. Critical illness is often associated with altered, predominately decreased, serum albumin levels. This hypoalbuminaemia is usually corrected by administration of exogenous albumin. This study aimed to track the concentration-dependent influence of albumin on blood coagulation in vitro. Whole blood (WB) samples from 25 volunteers were prepared to contain low (19.3 ± 7.7 g/L), physiological (45.2 ± 7.8 g/L), and high (67.5 ± 18.1 g/L) levels of albumin. Haemostatic profiling was performed using a platelet function analyzer (PFA) 200, impedance aggregometry, a Cone and Platelet analyzer (CPA), calibrated automated thrombogram, and thrombelastometry (TEM). Platelet aggregation-associated ATP release was assessed via HPLC analysis. In the low albumin group, when compared to the physiological albumin group, we found: i) shortened PFA 200-derived closure times indicating increased primary haemostasis; ii) increased impedance aggregometry-derived amplitudes, slopes, ATP release, as well as CPA-derived average size indicating improved platelet aggregation; iii) increased TEM-derived maximum clot firmness and alpha angles indicating enhanced clot formation. TEM measurements indicated impaired clot formation in the high albumin group compared with the physiological albumin group. Thus, albumin exerted significant anticoagulant action. Therefore, low albumin levels, often present in cancer or critically ill patients, might contribute to the frequently occurring venous thromboembolism.
Journal Article
Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury
by
Werb, Zena
,
Kessenbrock, Kai
,
Toy, Pearl
in
Acute Lung Injury - drug therapy
,
Acute Lung Injury - etiology
,
Acute Lung Injury - immunology
2012
There is emerging evidence that platelets are major contributors to inflammatory processes through intimate associations with innate immune cells. Here, we report that activated platelets induce the formation of neutrophil extracellular traps (NETs) in transfusion-related acute lung injury (TRALI), which is the leading cause of death after transfusion therapy. NETs are composed of decondensed chromatin decorated with granular proteins that function to trap extracellular pathogens; their formation requires the activation of neutrophils and release of their DNA in a process that may or may not result in neutrophil death. In a mouse model of TRALI that is neutrophil and platelet dependent, NETs appeared in the lung microvasculature and NET components increased in the plasma. We detected NETs in the lungs and plasma of human TRALI and in the plasma of patients with acute lung injury. In the experimental TRALI model, targeting platelet activation with either aspirin or a glycoprotein IIb/IIIa inhibitor decreased NET formation and lung injury. We then directly targeted NET components with a histone blocking antibody and DNase1, both of which protected mice from TRALI. These data suggest that NETs contribute to lung endothelial injury and that targeting NET formation may be a promising new direction for the treatment of acute lung injury.
Journal Article
Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies
2018
The incidence and prevalence of diabetes mellitus is rapidly increasing worldwide at an alarming rate. Type 2 diabetes mellitus (T2DM) is the most prevalent form of diabetes, accounting for approximately 90–95% of the total diabetes cases worldwide. Besides affecting the ability of body to use glucose, it is associated with micro-vascular and macro-vascular complications. Augmented atherosclerosis is documented to be the key factor leading to vascular complications in T2DM patients. The metabolic milieu of T2DM, including insulin resistance, hyperglycemia and release of excess free fatty acids, along with other metabolic abnormalities affects vascular wall by a series of events including endothelial dysfunction, platelet hyperactivity, oxidative stress and low-grade inflammation. Activation of these events further enhances vasoconstriction and promotes thrombus formation, ultimately resulting in the development of atherosclerosis. All these evidences are supported by the clinical trials reporting the importance of endothelial dysfunction and platelet hyperactivity in the pathogenesis of atherosclerotic vascular complications. In this review, an attempt has been made to comprehensively compile updated information available in context of endothelial and platelet dysfunction in T2DM.
Journal Article
Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting
by
Mao, Jianhua
,
Li, Ling
,
Zhou, Yulan
in
Abciximab - pharmacology
,
Acute coronary syndromes
,
Amino Acid Sequence
2019
Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbβ3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbβ3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbβ3 to switch from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbβ3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbβ3 in particular. Integrin αIIbβ3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbβ3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbβ3 and its signaling pathways.
Journal Article