Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
214,109
result(s) for
"Blood proteins"
Sort by:
Ingestion of Insect Protein Isolate Enhances Blood Amino Acid Concentrations Similar to Soy Protein in A Human Trial
by
Thogersen, Rebekka
,
Heckmann, Lars-Henrik L.
,
Bertram, Hanne C.
in
Adult
,
Alphitobius diaperinus
,
amino acid composition
2018
Background: Increased amino acid availability stimulates muscle protein synthesis (MPS), which is critical for maintaining or increasing muscle mass when combined with training. Previous research suggests that whey protein is superior to soy protein in regard to stimulating MPS and muscle mass. Nevertheless, with respect to a future lack of dietary protein and an increasing need for using eco-friendly protein sources it is of great interest to investigate the quality of alternative protein sources, like insect protein. Objective: Our aim was to compare the postprandial amino acid (AA) availability and AA profile in the blood after ingestion of protein isolate from the lesser mealworm, whey isolate, and soy isolate. Design: Six healthy young men participated in a randomized cross-over study and received three different protein supplementations (25 g of crude protein from whey, soy, insect or placebo (water)) on four separate days. Blood samples were collected at pre, 0 min, 20 min, 40 min, 60 min, 90 min, and 120 min. Physical activity and dietary intake were standardized before each trial, and participants were instructed to be fasting from the night before. AA concentrations in blood samples were determined using 1H NMR spectroscopy. Results: A significant rise in blood concentration of essential amino acids (EAA), branched-chain amino acids (BCAA) and leucine was detected over the 120 min period for all protein supplements. Nevertheless, the change in AA profile was significantly greater after ingestion of whey than soy and insect protein (p < 0.05). Area under the curve (AUC) analysis and AA profile revealed comparable AA concentrations for soy and insect protein, whereas whey promoted a ~97% and ~140% greater AUC value than soy and insect protein, respectively. A tendency towards higher AA concentrations beyond the 120 min period was observed for insect protein. Conclusion: We report that ingestion of whey, soy, and insect protein isolate increases blood concentrations of EAA, BCAA, and leucine over a 120 min period (whey > insect = soy). Insect protein induced blood AA concentrations similar to soy protein. However, a tendency towards higher blood AA concentrations at the end of the 120 min period post ingestion was observed for insect protein, which indicates that it can be considered a “slow” digestible protein source.
Journal Article
Amino Acid Availability of a Dairy and Vegetable Protein Blend Compared to Single Casein, Whey, Soy, and Pea Proteins: A Double-Blind, Cross-Over Trial
2019
Protein quality is important for patients needing medical nutrition, especially those dependent on tube feeding. A blend of dairy and vegetable proteins (35% whey, 25% casein, 20% soy, 20% pea; P4) developed to obtain a more balanced amino acid profile with higher chemical scores, was compared to its constituent single proteins. Fourteen healthy elderly subjects received P4, whey, casein, soy, and pea (18 g/360 mL bolus) on five separate visits. Blood samples were collected at baseline until 240 min after intake. Amino acid availability was calculated using incremental maximal concentration (iCmax) and area under the curve (iAUC). Availability for P4 as a sum of all amino acids was similar to casein (iCmax and iAUC) and whey (iCmax) and higher vs. soy (iCmax and iAUC) and pea (iCmax). Individual amino acid availability (iCmax and iAUC) showed different profiles reflecting the composition of the protein sources: availability of leucine and methionine was higher for P4 vs. soy and pea; availability of arginine was higher for P4 vs. casein and whey. Conclusions: The P4 amino acid profile was reflected in post-prandial plasma levels and may be regarded as more balanced compared to the constituent single proteins.
Journal Article
An integrated epigenomic analysis for type 2 diabetes susceptibility loci in monozygotic twins
by
Xia, Yudong
,
Wu, Honglong
,
Small, Kerrin S.
in
631/208/176/1988
,
631/208/514/1948
,
692/699/2743/137/773
2014
DNA methylation has a great potential for understanding the aetiology of common complex traits such as Type 2 diabetes (T2D). Here we perform genome-wide methylated DNA immunoprecipitation sequencing (MeDIP-seq) in whole-blood-derived DNA from 27 monozygotic twin pairs and follow up results with replication and integrated omics analyses. We identify predominately hypermethylated T2D-related differentially methylated regions (DMRs) and replicate the top signals in 42 unrelated T2D cases and 221 controls. The strongest signal is in the promoter of the
MALT1
gene, involved in insulin and glycaemic pathways, and related to taurocholate levels in blood. Integrating the DNA methylome findings with T2D GWAS meta-analysis results reveals a strong enrichment for DMRs in T2D-susceptibility loci. We also detect signals specific to T2D-discordant twins in the
GPR61
and
PRKCB
genes. These replicated T2D associations reflect both likely causal and consequential pathways of the disease. The analysis indicates how an integrated genomics and epigenomics approach, utilizing an MZ twin design, can provide pathogenic insights as well as potential drug targets and biomarkers for T2D and other complex traits.
Type 2 diabetes (T2D) is a highly heterogeneous disease with a strong genetic component. Here the authors examine genome-wide methylation patterns in T2D-discordant, T2D-concordant and healthy concordant monozygotic twin pairs, and identify DNA methylation signals that may represent new biomarkers or drug targets for T2D.
Journal Article
Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study
by
Werth, Victoria P
,
Illei, Gabor G
,
Wang, Liangwei
in
Adult
,
Antibodies, Monoclonal - administration & dosage
,
Antibodies, Monoclonal, Humanized
2016
ObjectivesThe efficacy and safety of sifalimumab were assessed in a phase IIb, randomised, double-blind, placebo-controlled study (NCT01283139) of adults with moderate to severe active systemic lupus erythematosus (SLE).Methods431 patients were randomised and received monthly intravenous sifalimumab (200 mg, 600 mg or 1200 mg) or placebo in addition to standard-of-care medications. Patients were stratified by disease activity, interferon gene-signature test (high vs low based on the expression of four genes) and geographical region. The primary efficacy end point was the percentage of patients achieving an SLE responder index response at week 52.ResultsCompared with placebo, a greater percentage of patients who received sifalimumab (all dosages) met the primary end point (placebo: 45.4%; 200 mg: 58.3%; 600 mg: 56.5%; 1200 mg 59.8%). Other improvements were seen in Cutaneous Lupus Erythematosus Disease Area and Severity Index score (200 mg and 1200 mg monthly), Physician's Global Assessment (600 mg and 1200 mg monthly), British Isles Lupus Assessment Group-based Composite Lupus Assessment (1200 mg monthly), 4-point reductions in the SLE Disease Activity Index−2000 score and reductions in counts of swollen joints and tender joints. Serious adverse events occurred in 17.6% of patients on placebo and 18.3% of patients on sifalimumab. Herpes zoster infections were more frequent with sifalimumab treatment.ConclusionsSifalimumab is a promising treatment for adults with SLE. Improvement was consistent across various clinical end points, including global and organ-specific measures of disease activity.Trial registration numberNCT01283139; Results.
Journal Article
Effects of B-cell directed therapy on the preclinical stage of rheumatoid arthritis: the PRAIRI study
by
Maijer, Karen I
,
Gerlag, Danielle M
,
Zwinderman, Aeilko H
in
Adult
,
Antigens
,
Antirheumatic Agents - administration & dosage
2019
ObjectivesWe explored the effects of B-cell directed therapy in subjects at risk of developing autoantibodypositive rheumatoid arthritis (RA), who never experienced inflammatory arthritis before, and explored biomarkers predictive of arthritis development.MethodsIndividuals positive for both anti-citrullinated peptide antibodies and rheumatoid factor but without arthritis were included in a randomised, double-blind, placebo-controlled study to receive a single infusion of 1000 mg rituximab or placebo.ResultsEighty-one individuals received treatment and were followed up for a mean of 29.0 (0–54) months, during which 30/81 (37%) individuals developed arthritis. The observed risk of developing arthritis in the placebo-treated group was 40%, which was decreased by 55% (HR 0.45, 95% CI 0.154 to 1.322) in the rituximab-treated group at 12 months. Rituximab treatment caused a delay in arthritis development of 12 months compared with placebo treatment at the point when 25% of the subjects had developed arthritis (p<0.0001). Erythrocyte sedimentation rate and the presence of anti-citrullinated α-enolase peptide 1 at baseline were significant predictors of arthritis development.ConclusionsA single infusion of 1000 mg rituximab significantly delays the development of arthritis in subjects at risk of developing RA, providing evidence for the pathogenetic role of B cells in the earliest, prearthritis stage of autoantibody positive RA.
Journal Article
Physiological blood–brain transport is impaired with age by a shift in transcytosis
2020
The vascular interface of the brain, known as the blood–brain barrier (BBB), is understood to maintain brain function in part via its low transcellular permeability
1
–
3
. Yet, recent studies have demonstrated that brain ageing is sensitive to circulatory proteins
4
,
5
. Thus, it is unclear whether permeability to individually injected exogenous tracers—as is standard in BBB studies—fully represents blood-to-brain transport. Here we label hundreds of proteins constituting the mouse blood plasma proteome, and upon their systemic administration, study the BBB with its physiological ligand. We find that plasma proteins readily permeate the healthy brain parenchyma, with transport maintained by BBB-specific transcriptional programmes. Unlike IgG antibody, plasma protein uptake diminishes in the aged brain, driven by an age-related shift in transport from ligand-specific receptor-mediated to non-specific caveolar transcytosis. This age-related shift occurs alongside a specific loss of pericyte coverage. Pharmacological inhibition of the age-upregulated phosphatase ALPL, a predicted negative regulator of transport, enhances brain uptake of therapeutically relevant transferrin, transferrin receptor antibody and plasma. These findings reveal the extent of physiological protein transcytosis to the healthy brain, a mechanism of widespread BBB dysfunction with age and a strategy for enhanced drug delivery.
Tagging and tracking the blood plasma proteome as a discovery tool reveals widespread endogenous transport of proteins into the healthy brain and the pharmacologically modifiable mechanisms by which the brain endothelium regulates this process with age.
Journal Article
PROGRESS STUDY
by
Goknar, Nilufer
,
Alpay, Harika
,
Yildiz, Nurdan
in
Apoptosis
,
Apoptosis - genetics
,
Biochemistry
2021
Various molecular and cellular processes are involved in renal fibrosis, such as oxidative stress, inflammation, endothelial cell injury, and apoptosis. Heat shock proteins (HSPs) are implicated in the progression of chronic kidney disease (CKD). Our aim was to evaluate changes in urine and serum HSP levels over time and their relationships with the clinical parameters of CKD in children. In total, 117 children with CKD and 56 healthy children were examined. The CKD group was followed up prospectively for 24 months. Serum and urine HSP27, HSP40, HSP47, HSP60, HSP70, HSP72, and HSP90 levels and serum anti-HSP60 and anti-HSP70 levels were measured by ELISA at baseline, 12 months, and 24 months. The urine levels of all HSPs and the serum levels of HSP40, HSP47, HSP60, HSP70, anti-HSP60, and anti-HSP70 were higher at baseline in the CKD group than in the control group. Over the months, serum HSP47 and HSP60 levels steadily decreased, whereas HSP90 and anti-HSP60 levels steadily increased. Urine HSP levels were elevated in children with CKD; however, with the exception of HSP90, they decreased over time. In conclusion, our study demonstrates that CKD progression is a complicated process that involves HSPs, but they do not predict CKD progression. The protective role of HSPs against CKD may weaken over time, and HSP90 may have a detrimental effect on the disease course.
Journal Article
Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins
by
Lötvall, Jan
,
Cvjetkovic, Aleksander
,
Nieuwland, Rienk
in
Biochemistry
,
Biochemistry & Molecular Biology
,
Biomarkers
2018
The isolation of extracellular vesicles (EVs) from blood is of great importance to understand the biological role of circulating EVs and to develop EVs as biomarkers of disease. Due to the concurrent presence of lipoprotein particles, however, blood is one of the most difficult body fluids to isolate EVs from. The aim of this study was to develop a robust method to isolate and characterise EVs from blood with minimal contamination by plasma proteins and lipoprotein particles. Plasma and serum were collected from healthy subjects, and EVs were isolated by size-exclusion chromatography (SEC), with most particles being present in fractions 8–12, while the bulk of the plasma proteins was present in fractions 11–28. Vesicle markers peaked in fractions 7–11; however, the same fractions also contained lipoprotein particles. The purity of EVs was improved by combining a density cushion with SEC to further separate lipoprotein particles from the vesicles, which reduced the contamination of lipoprotein particles by 100-fold. Using this novel isolation procedure, a total of 1187 proteins were identified in plasma EVs by mass spectrometry, of which several proteins are known as EV-associated proteins but have hitherto not been identified in the previous proteomic studies of plasma EVs. This study shows that SEC alone is unable to completely separate plasma EVs from lipoprotein particles. However, combining SEC with a density cushion significantly improved the separation of EVs from lipoproteins and allowed for a detailed analysis of the proteome of plasma EVs, thus making blood a viable source for EV biomarker discovery.
Journal Article
High-throughput mediation analysis of human proteome and metabolome identifies mediators of post-bariatric surgical diabetes control
2021
To improve the power of mediation in high-throughput studies, here we introduce High-throughput mediation analysis (Hitman), which accounts for direction of mediation and applies empirical Bayesian linear modeling. We apply Hitman in a retrospective, exploratory analysis of the SLIMM-T2D clinical trial in which participants with type 2 diabetes were randomized to Roux-en-Y gastric bypass (RYGB) or nonsurgical diabetes/weight management, and fasting plasma proteome and metabolome were assayed up to 3 years. RYGB caused greater improvement in HbA1c, which was mediated by growth hormone receptor (GHR). GHR’s mediation is more significant than clinical mediators, including BMI. GHR decreases at 3 months postoperatively alongside increased insulin-like growth factor binding proteins IGFBP1/BP2; plasma GH increased at 1 year. Experimental validation indicates (1) hepatic GHR expression decreases in post-bariatric rats; (2) GHR knockdown in primary hepatocytes decreases gluconeogenic gene expression and glucose production. Thus, RYGB may induce resistance to diabetogenic effects of GH signaling.
Trial Registration: Clinicaltrials.gov NCT01073020.
Factors underlying the effects of gastric bypass surgery on glucose homeostasis are incompletely understood. Here the authors developed and applied high-throughput mediation analysis to identify proteome/metabolome mediators of improved glucose homeostasis after to gastric bypass surgery, and report that improved glycemia was mediated by the growth hormone receptor.
Journal Article
Inflammasome and toll-like receptor signaling in human monocytes after successful cardiopulmonary resuscitation
by
Fink, Katrin
,
Busch, Hans-Jörg
,
Helbing, Thomas
in
Adaptor Proteins, Signal Transducing - analysis
,
Adaptor Proteins, Signal Transducing - blood
,
Aged
2016
Background
Whole body ischemia-reperfusion injury (IRI) after cardiopulmonary resuscitation (CPR) induces a generalized inflammatory response which contributes to the development of post-cardiac arrest syndrome (PCAS). Recently, pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and inflammasomes, have been shown to mediate the inflammatory response in IRI. In this study we investigated monocyte PRR signaling and function in PCAS.
Methods
Blood samples were drawn in the first 12 hours, and at 24 and 48 hours following return of spontaneous circulation in 51 survivors after cardiac arrest. Monocyte mRNA levels of TLR2, TLR4, interleukin-1 receptor-associated kinase (IRAK)3, IRAK4, NLR family pyrin domain containing (NLRP)1, NLRP3, AIM2, PYCARD, CASP1, and IL1B were determined by real-time quantitative PCR. Ex vivo cytokine production in response to stimulation with TLR ligands Pam
3
CSK
4
and lipopolysaccharide (LPS) was assessed in both whole blood and monocyte culture assays. Ex vivo cytokine production of peripheral blood mononuclear cells (PBMCs) from a healthy volunteer in response to stimulation with patients’ sera with or without LPS was assessed. The results were compared to 19 hemodynamically stable patients with coronary artery disease.
Results
Monocyte TLR2, TLR4, IRAK3, IRAK4, NLRP3, PYCARD and IL1B were initially upregulated in patients following cardiac arrest. The NLRP1 and AIM2 inflammasomes were downregulated in resuscitated patients. There was a significant positive correlation between TLR2, TLR4, IRAK3 and IRAK4 expression and the degree of ischemia as assessed by serum lactate levels and the time until return of spontaneous circulation. Nonsurvivors at 30 days had significantly lower mRNA levels of TLR2, IRAK3, IRAK4, NLRP3 and CASP1 in the late phase following cardiac arrest. We observed reduced proinflammatory cytokine release in response to both TLR2 and TLR4 activation in whole blood and monocyte culture assays in patients after CPR. Sera from resuscitated patients attenuated the inflammatory response in cultured PBMCs after co-stimulation with LPS.
Conclusions
Successful resuscitation from cardiac arrest results in changes in monocyte pattern recognition receptor signaling pathways, which may contribute to the post-cardiac arrest syndrome.
Trial registration
The trial was registered in the German Clinical Trials Register (
DRKS00009684
) on 27/11/2015.
Journal Article