Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
343 result(s) for "Bmp Signalling"
Sort by:
Dullard-mediated Smad1/5/8 inhibition controls mouse cardiac neural crest cells condensation and outflow tract septation
The establishment of separated pulmonary and systemic circulation in vertebrates, via cardiac outflow tract (OFT) septation, is a sensitive developmental process accounting for 10% of all congenital anomalies. Neural Crest Cells (NCC) colonising the heart condensate along the primitive endocardial tube and force its scission into two tubes. Here, we show that NCC aggregation progressively decreases along the OFT distal-proximal axis following a BMP signalling gradient. Dullard, a nuclear phosphatase, tunes the BMP gradient amplitude and prevents NCC premature condensation. Dullard maintains transcriptional programs providing NCC with mesenchymal traits. It attenuates the expression of the aggregation factor Sema3c and conversely promotes that of the epithelial-mesenchymal transition driver Twist1. Altogether, Dullard-mediated fine-tuning of BMP signalling ensures the timed and progressive zipper-like closure of the OFT by the NCC and prevents the formation of a heart carrying the congenital abnormalities defining the tetralogy of Fallot.
BMP and NODAL paracrine signalling regulate the totipotent-like cell state in embryonic stem cells
Cell–cell communication coordinates signalling between cells to guide context-dependent cell fate decisions such as proliferation, differentiation, and lineage specification. Such communication mechanisms are poorly understood in regulating the stem cell states. In this study, we investigate how cell-cell communication regulates cell fate transitions in heterogeneous embryonic stem cell populations, with a particular focus on totipotent-like cells that resemble the two-cell stage embryo. Using single-cell RNA sequencing in combination with computational frameworks, we map ligand–receptor interactions and model downstream regulatory effects across various stem cell states. We functionally validate the predictions by selectively perturbing signalling pathways under specific culture conditions. Our data reveal the key roles of BMP and NODAL (TGF-β) signalling in mediating intercellular communication to shape stem cell identity and heterogeneity. These findings enhance our understanding of the signalling logic that governs early developmental cell fate decisions, providing new insights into stem cell biology with broad implications for regenerative medicine and developmental modelling.
Striking parallels between dorsoventral patterning in Drosophila and Gryllus reveal a complex evolutionary history behind a model gene regulatory network
Dorsoventral pattering relies on Toll and BMP signalling in all insects studied so far, with variations in the relative contributions of both pathways. Drosophila and the beetle Tribolium share extensive dependence on Toll, while representatives of more distantly related lineages like the wasp Nasonia and bug Oncopeltus rely more strongly on BMP signalling. Here, we show that in the cricket Gryllus bimaculatus , an evolutionarily distant outgroup, Toll has, like in Drosophila , a direct patterning role for the ventral half of the embryo. In addition, Toll polarises BMP signalling, although this does not involve the conserved BMP inhibitor Sog/Chordin. Finally, Toll activation relies on ovarian patterning mechanisms with striking similarity to Drosophila . Our data suggest two surprising hypotheses: (1) that Toll's patterning function in Gryllus and Drosophila is the result of convergent evolution or (2) a Drosophila-like system arose early in insect evolution and was extensively altered in multiple independent lineages.
cKit⁺ cardiac progenitors of neural crest origin
The degree to whichcKit-expressing progenitors generate cardiomyocytes in the heart is controversial. Genetic fate-mapping studies suggest minimal contribution; however, whether or not minimal contribution reflects minimal cardiomyogenic capacity is unclear because the embryonic origin and role in cardiogenesis of these progenitors remain elusive. Using high-resolution genetic fate-mapping approaches withcKitCreERT2/+ andWnt1::Flpemouse lines, we show thatcKitdelineates cardiac neural crest progenitors (CNC kit ). CNC kit possess full cardiomyogenic capacity and contribute to all CNC derivatives, including cardiac conduction system cells. Furthermore, by modeling cardiogenesis incKitCreERT2 -induced pluripotent stem cells, we show that, paradoxically, the cardiogenic fate of CNC kit is regulated by bone morphogenetic protein antagonism, a signaling pathway activated transiently during establishment of the cardiac crescent, and extinguished from the heart before CNC invasion. Together, these findings elucidate the origin of cKit⁺ cardiac progenitors and suggest that a nonpermissive cardiac milieu, rather than minimal cardiomyogenic capacity, controls the degree of CNC kit contribution to myocardium.
Hedgehog Signalling in Osteogenesis and Bone Metabolism: Molecular Mechanisms, Regulatory Networks and Implications for Skeletal Disease
The Hedgehog (Hh) signalling pathway serves as a fundamental regulator in bone development and homeostasis, translating extracellular signals into precise transcriptional programmes that govern osteogenic differentiation and bone remodelling. Central to this process, ligand‐dependent Hh activation induces the nuclear translocation of GLI transcription factors (GLI1/2/3), which orchestrate the expression of key osteogenic regulators, including RUNX2 and Osterix (OSX), thereby directing mesenchymal stem cell (MSC) fate commitment. Among Hh ligands, the Indian hedgehog (Ihh) plays a dominant role in endochondral ossification, spatiotemporally controlling osteoprogenitor differentiation and chondrocyte maturation. Notably, the Hh pathway engages in extensive, context‐dependent crosstalk with Wnt/β‐catenin, BMP, TGF‐β, FGF and PTHrP signalling cascades, forming a highly interconnected regulatory network essential for skeletal patterning and morphogenesis. Dysregulation of this balanced system contributes to a spectrum of skeletal disorders, ranging from congenital defects to degenerative bone diseases, highlighting its critical role in maintaining bone integrity. This review synthesises recent advances in Hh‐mediated osteogenesis, dissecting its multi‐layered interactions within the skeletal gene regulatory framework. By unravelling the molecular logic of Hh‐dependent signalling networks, we deepen our understanding of bone biology and illuminate novel therapeutic targets for skeletal pathologies through precision modulation of Hh pathway activity.
Highly conserved and extremely evolvable: BMP signalling in secondary axis patterning of Cnidaria and Bilateria
Bilateria encompass the vast majority of the animal phyla. As the name states, they are bilaterally symmetric, that is with a morphologically clear main body axis connecting their anterior and posterior ends, a second axis running between their dorsal and ventral surfaces, and with a left side being roughly a mirror image of their right side. Bone morphogenetic protein (BMP) signalling has widely conserved functions in the formation and patterning of the second, dorso-ventral (DV) body axis, albeit to different extents in different bilaterian species. Whilst initial findings in the fruit fly Drosophila and the frog Xenopus highlighted similarities amongst these evolutionarily very distant species, more recent analyses featuring other models revealed considerable diversity in the mechanisms underlying dorsoventral patterning. In fact, as phylogenetic sampling becomes broader, we find that this axis patterning system is so evolvable that even its core components can be deployed differently or lost in different model organisms. In this review, we will try to highlight the diversity of ways by which BMP signalling controls bilaterality in different animals, some of which do not belong to Bilateria. Future research combining functional analyses and modelling is bound to give us some understanding as to where the limits to the extent of the evolvability of BMP-dependent axial patterning may lie.
A neuroepithelial wave of BMP signalling drives anteroposterior specification of the tuberal hypothalamus
The tuberal hypothalamus controls life-supporting homeostatic processes, but despite its fundamental role, the cells and signalling pathways that specify this unique region of the central nervous system in embryogenesis are poorly characterised. Here, we combine experimental and bioinformatic approaches in the embryonic chick to show that the tuberal hypothalamus is progressively generated from hypothalamic floor plate-like cells. Fate-mapping studies show that a stream of tuberal progenitors develops in the anterior-ventral neural tube as a wave of neuroepithelial-derived BMP signalling sweeps from anterior to posterior through the hypothalamic floor plate. As later-specified posterior tuberal progenitors are generated, early specified anterior tuberal progenitors become progressively more distant from these BMP signals and differentiate into tuberal neurogenic cells. Gain- and loss-of-function experiments in vivo and ex vivo show that BMP signalling initiates tuberal progenitor specification, but must be eliminated for these to progress to anterior neurogenic progenitors. scRNA-Seq profiling shows that tuberal progenitors that are specified after the major period of anterior tuberal specification begin to upregulate genes that characterise radial glial cells. This study provides an integrated account of the development of the tuberal hypothalamus.
Berberine and aspirin prevent traumatic heterotopic ossification by inhibition of BMP signalling pathway and osteogenic differentiation
Heterotopic ossification (HO) is a pathological process that often occurs in soft tissues following severe trauma. There is no effective therapy for HO. The BMP signalling pathway plays an essential role in the pathogenesis of HO. Our previous study showed that AMPK negatively regulates the BMP signalling pathway and osteogenic differentiation. The present study aims to study the effect of two AMPK activators berberine and aspirin on osteogenic differentiation and HO induced by traumatic injury. The effects of two AMPK activators, berberine and aspirin, on BMP signalling and osteogenic differentiation were measured by western blot, ALP and Alizarin red S staining in C3H10T1/2 cells. A mouse model with Achilles tenotomy was employed to assess the effects of berberine and aspirin on HO using μCT and histological analysis. First, our study showed that berberine and aspirin inhibited phosphorylation of Smad1/5 induced by BMP6 and the inhibition was attributed to the down‐regulation of ALK2 expression. Second, the combination of berberine and aspirin yielded more potent effects on BMP signalling. Third, we further found that there was an additive effect of berberine and aspirin combination on osteogenic differentiation. Finally, we found that berberine and aspirin blocked trauma‐induced ectopic bone formation in mice, which may be through suppression of phosphorylation of Smad1/5 in injured tissues. Collectively, these findings indicate that berberine and aspirin inhibit osteogenic differentiation in C3H10T1/2 cells and traumatic HO in mice, possibly through the down‐regulation of the BMP signalling pathway. Our study sheds a light on prevention and treatment of traumatic HO using AMPK pharmacological activators berberine and aspirin.
Temporally Altered miRNA Expression in a Piglet Model of Hypoxic Ischemic Brain Injury
Hypoxic ischemic encephalopathy (HIE) is the most frequent cause of acquired infant brain injury. Early, clinically relevant biomarkers are required to allow timely application of therapeutic interventions. We previously reported early alterations in several microRNAs (miRNA) in umbilical cord blood at birth in infants with HIE. However, the exact timing of these alterations is unknown. Here, we report serial changes in six circulating, cross-species/bridging biomarkers in a clinically relevant porcine model of neonatal HIE with functional analysis. Six miRNAs—miR-374a, miR-181b, miR-181a, miR-151a, miR-148a and miR-128—were significantly and rapidly upregulated 1-h post-HI. Changes in miR-374a, miR-181b and miR-181a appeared specific to moderate-severe HI. Histopathological injury and five miRNAs displayed positive correlations and were predictive of MRS Lac/Cr ratios. Bioinformatic analysis identified that components of the bone morphogenic protein (BMP) family may be targets of miR-181a. Inhibition of miR-181a increased neurite length in both SH-SY5Y cells at 1 DIV (days in vitro) and in primary cultures of rat neuronal midbrain at 3 DIV. In agreement, inhibition of miR-181a increased expression of BMPR2 in differentiating SH-SY5Y cells. These miRNAs may therefore act as early biomarkers of HIE, thereby allowing for rapid diagnosis and timely therapeutic intervention and may regulate expression of signalling pathways vital to neuronal survival.
Systems biology derived source-sink mechanism of BMP gradient formation
A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development. Before an animal is born, a protein called BMP plays a key role in establishing the difference between the front and the back of the animal. Cells nearer the front of the embryo contain higher amounts of the BMP protein, whilst cells nearer the back have progressively lower levels of BMP. This gradient of BMP ‘concentration’ affects the identity of the cells, with the level of BMP in each cell dictating what parts of the body are made where. The prevailing view among scientists is that the BMP gradient is created by an opposing gradient of another protein called Chordin, which is found at high levels at the back of the embryo and lower levels near the front. Chordin inhibits BMP and the interaction between the two proteins establishes the gradients that create order across the embryo. Zinski et al. used computer models to investigate how the BMP gradient is created. Several possibilities were considered, including the effect of Chordin. Comparing the models to precise experimental measurements of BMP activity in zebrafish embryos suggested that a different mechanism known as a source-sink model, rather than the opposing Chordin gradient, may be responsible for the pattern of BMP found in the embryo. In this model, the BMP is produced at the front of the embryo and moves towards the back end by diffusion. At the back of the embryo, BMP is mopped up by Chordin, resulting in a constant gradient of BMP along the embryo. Many other processes that control how animals grow and develop rely on the formation of similar protein gradients, so these findings may also apply to other aspects of animal development. Understanding how animals grow and develop may help researchers to develop strategies to regrow tissues and organs in human patients.