Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,866
result(s) for
"Body Fluids - metabolism"
Sort by:
Adult neurogenesis of the median eminence contributes to structural reconstruction and recovery of body fluid metabolism in hypothalamic self-repair after pituitary stalk lesion
by
Che, Mengjie
,
Li, Kai
,
Wu, Guangsen
in
adults
,
arginine vasopressin
,
Arginine Vasopressin - metabolism
2022
Body fluid homeostasis is critical to survival. The integrity of the hypothalamo-neurohypophysial system (HNS) is an important basis of the precise regulation of body fluid metabolism and arginine vasopressin (AVP) hormone release. Clinically, some patients with central diabetes insipidus (CDI) due to HNS lesions can experience recovery compensation of body fluid metabolism. However, whether the hypothalamus has the potential for structural plasticity and self-repair under pathological conditions remains unclear. Here, we report the repair and reconstruction of a new neurohypophysis-like structure in the hypothalamic median eminence (ME) after pituitary stalk electrical lesion (PEL). We show that activated and proliferating adult neural progenitor cells differentiate into new mature neurons, which then integrate with remodeled AVP fibers to reconstruct the local AVP hormone release neural circuit in the ME after PEL. We found that the transcription factor of NK2 homeobox 1 (NKX2.1) and the sonic hedgehog signaling pathway, mediated by NKX2.1, are the key regulators of adult hypothalamic neurogenesis. Taken together, our study provides evidence that adult ME neurogenesis is involved in the structural reconstruction of the AVP release circuit and eventually restores body fluid metabolic homeostasis during hypothalamic self-repair.
Journal Article
Osmotic diuresis by SGLT2 inhibition stimulates vasopressin‐induced water reabsorption to maintain body fluid volume
2020
Most of the filtered glucose is reabsorbed in the early proximal tubule by the sodium‐glucose cotransporter SGLT2. The glycosuric effect of the SGLT2 inhibitor ipragliflozin is linked to a diuretic and natriuretic effect that activates compensatory increases in fluid and food intake to stabilize body fluid volume (BFV). However, the compensatory mechanisms that are activated on the level of renal tubules remain unclear. Type 2 diabetic Goto‐Kakizaki (GK) rats were treated with vehicle or 0.01% (in diet) ipragliflozin with free access to fluid and food. After 8 weeks, GK rats were placed in metabolic cages for 24‐hr. Ipragliflozin decreased body weight, serum glucose and systolic blood pressure, and increased fluid and food intake, urinary glucose and Na+ excretion, urine volume, and renal osmolar clearance, as well as urine vasopressin and solute‐free water reabsorption (TcH2O). BFV, measured by bioimpedance spectroscopy, and fluid balance were similar among the two groups. Urine vasopressin in ipragliflozin‐treated rats was negatively and positively associated with fluid balance and TcH2O, respectively. Ipragliflozin increased the renal membrane protein expression of SGLT2, aquaporin (AQP) 2 phosphorylated at Ser269 and vasopressin V2 receptor. The expression of SGLT1, GLUT2, AQP1, and AQP2 was similar between the groups. In conclusion, the SGLT2 inhibitor ipragliflozin induced a sustained glucosuria, diuresis, and natriuresis, with compensatory increases in fluid intake and vasopressin‐induced TcH2O in proportion to the reduced fluid balance to maintain BFV. These results indicate that the osmotic diuresis induced by SGLT2 inhibition stimulates compensatory fluid intake and renal water reabsorption to maintain BFV.
We show in this study that SGLT2 inhibitor ipragliflozin induced a sustained glucosuria, diuresis, and natriuresis, with compensatory increases in fluid intake and vasopressin‐induced aquaporin‐2 phosphorylation and solute‐free water reabsorption in proportion to the reduced fluid balance to maintain body fluid volume These results indicate that the osmotic diuresis induced by SGLT2 inhibition stimulates compensatory fluid intake and renal water reabsorption to maintain body fluid volume.
Journal Article
Fluids and their mechanics in tumour transit: shaping metastasis
2020
Metastasis is a dynamic succession of events involving the dissemination of tumour cells to distant sites within the body, ultimately reducing the survival of patients with cancer. To colonize distant organs and, therefore, systemically disseminate within the organism, cancer cells and associated factors exploit several bodily fluid systems, which provide a natural transportation route. Indeed, the flow mechanics of the blood and lymphatic circulatory systems can be co-opted to improve the efficiency of cancer cell transit from the primary tumour, extravasation and metastatic seeding. Flow rates, vessel size and shear stress can all influence the survival of cancer cells in the circulation and control organotropic seeding patterns. Thus, in addition to using these fluids as a means to travel throughout the body, cancer cells exploit the underlying physical forces within these fluids to successfully seed distant metastases. In this Review, we describe how circulating tumour cells and tumour-associated factors leverage bodily fluids, their underlying forces and imposed stresses during metastasis. As the contribution of bodily fluids and their mechanics raises interesting questions about the biology of the metastatic cascade, an improved understanding of this process might provide a new avenue for targeting cancer cells in transit.This Review discusses the role of bodily fluids and their underlying forces and imposed stresses in metastasis, highlighting the contributions of fluid mechanics to tumour cell intravasation, intravascular arrest and extravasation as well as to dissemination of tumour-derived factors.
Journal Article
Extracellular vesicle isolation and characterization: toward clinical application
by
Greening, David W.
,
Xu, Rong
,
Takahashi, Nobuhiro
in
Animals
,
Biomarkers - metabolism
,
Biomedical research
2016
Two broad categories of extracellular vesicles (EVs), exosomes and shed microvesicles (sMVs), which differ in size distribution as well as protein and RNA profiles, have been described. EVs are known to play key roles in cell-cell communication, acting proximally as well as systemically. This Review discusses the nature of EV subtypes, strategies for isolating EVs from both cell-culture media and body fluids, and procedures for quantifying EVs. We also discuss proteins selectively enriched in exosomes and sMVs that have the potential for use as markers to discriminate between EV subtypes, as well as various applications of EVs in clinical diagnosis.
Journal Article
A Clinical Single-Pass Perfusion Investigation of the Dynamic in Vivo Secretory Response to a Dietary Meal in Human Proximal Small Intestine
2006
To investigate the gastrointestinal secretory and enzymatic responses to a liquid meal during in vivo perfusion of the proximal human jejunum.
Human intestinal fluid was collected from the proximal jejunum by single-pass in vivo perfusion (Loc-I-Gut). The fluid was quantitatively collected at 10-min intervals during 90 min while perfusing a nutritional drink at 2 mL/min. Quantification of lipids in the fluid leaving the segment was performed by using novel chromatographic methods.
The overall bile acid concentration varied between 0.5 and 8.6 mM with a peak level 40 min after the start of the liquid meal perfusion. The total concentration of phospholipids was between 0.1 and 3.9 mM and there was a rapid degradation of phosphatidylcholine to lysophosphatidylcholine. The tri-, di-, monoglycerides and free fatty acid levels increased sharply in the beginning and reached steady-state levels between 7 and 9.5 mM.
There is a rapid secretion of bile in response to food. Most of the dietary lipids are found in the form of their degradation products in vivo in human jejunum. This novel in vivo characterization, based on direct and high-recovery sampling of intestinal fluids, forms a basis for further development of improved in vitro drug dissolution test media.
Journal Article
Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow
by
Sejnowski, Terrence J.
,
Nagelhus, Erlend Arnulf
,
Mardal, Kent-André
in
Amyloid
,
Animals
,
Biological Sciences
2017
The brain lacks lymph vessels and must rely on other mechanisms for clearance of waste products, including amyloid β that may form pathological aggregates if not effectively cleared. It has been proposed that flow of interstitial fluid through the brain’s interstitial space provides a mechanism for waste clearance. Here we compute the permeability and simulate pressure-mediated bulk flow through 3D electron microscope (EM) reconstructions of interstitial space. The space was divided into sheets (i.e., space between two parallel membranes) and tunnels (where three or more membranes meet). Simulation results indicate that even for larger extracellular volume fractions than what is reported for sleep and for geometries with a high tunnel volume fraction, the permeability was too low to allow for any substantial bulk flow at physiological hydrostatic pressure gradients. For two different geometries with the same extracellular volume fraction the geometry with the most tunnel volume had 36% higher permeability, but the bulk flow was still insignificant. These simulation results suggest that even large molecule solutes would be more easily cleared from the brain interstitium by diffusion than by bulk flow. Thus, diffusion within the interstitial space combined with advection along vessels is likely to substitute for the lymphatic drainage system in other organs.
Journal Article
Biomolecular coronas provide the biological identity of nanosized materials
by
Dawson, Kenneth A.
,
Åberg, Christoffer
,
Monopoli, Marco P.
in
639/925/350/354
,
639/925/352
,
Animals
2012
Nanoparticles in contact with the biological environment adsorb a layer of biomolecules, which forms the biological identity of the particles. This Review outlines the concepts of the nanoparticle corona and how it interacts with biological systems, and assesses the critical problems to be resolved.
The search for understanding the interactions of nanosized materials with living organisms is leading to the rapid development of key applications, including improved drug delivery by targeting nanoparticles, and resolution of the potential threat of nanotechnological devices to organisms and the environment. Unless they are specifically designed to avoid it, nanoparticles in contact with biological fluids are rapidly covered by a selected group of biomolecules to form a corona that interacts with biological systems. Here we review the basic concept of the nanoparticle corona and its structure and composition, and highlight how the properties of the corona may be linked to its biological impacts. We conclude with a critical assessment of the key problems that need to be resolved in the near future.
Journal Article
Copper Homeostasis in Mammals, with Emphasis on Secretion and Excretion. A Review
2020
One of the hallmarks of Cu metabolism in mammals is that tissue and fluid levels are normally maintained within a very narrow range of concentrations. This results from the ability of the organism to respond to variations in intake from food and drink by balancing excretion, which occurs mainly via the bile and feces. Although this sounds straightforward and we have already learned a great deal about aspects of this process, the balance between overall intake and excretion occurs over a high background of Cu recycling, which has generally been ignored. In fact, most of the Cu absorbed from the GI tract actually comes from digestive fluids and is constantly “re-used”. A great deal more recycling of Cu probably occurs in the interior, between cells of individual tissues and the fluid of the blood and interstitium. This review presents what is known that is pertinent to understanding these complexities of mammalian Cu homeostasis and indicates where further studies are needed.
Journal Article
Exosome isolation from distinct biofluids using precipitation and column-based approaches
by
Catita, José
,
A. B. da Cruz e Silva, Odete
,
Martins Rosa, Ilka
in
Analysis
,
Biological markers
,
Biology and Life Sciences
2018
The potential of exosomes as biomarker resources for diagnostics, prognostics and even for therapeutics is an area of intense research. Despite the various approaches available, there is no consensus with respect to the best methodology for isolating exosomes and to provide substantial yields with reliable quality. Differential centrifugation is the most commonly used method but it is time-consuming and requires large sample volumes, thus alternative methods are urgently needed. In this study two precipitation-based methods and one column-based approach were compared for exosome isolation from distinct biofluids (serum, plasma and cerebrospinal fluid). Exosome characterization included morphological analyses, determination of particle concentration, stability and exosome preparations' purity, using different complementary approaches such as Nanoparticle Tracking Analysis, Electrophoretic Light Scattering, Transmission Electron Microscopy, EXOCET colorimetric assay, protein quantification methods and western blotting. The three commercial kits tested successfully isolated exosomes from the biofluids under study, although ExoS showed the best performance in terms of exosome yield and purity. Data shows that methods other than differential centrifugation can be applied to quickly and efficiently isolate exosomes from reduced biofluid volumes. The possibility to use small volumes is fundamental in the context of translational and clinical research, thus the results here presented contribute significantly in this respect.
Journal Article
α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling
2018
The ageing suppressor α-klotho binds to the fibroblast growth factor receptor (FGFR). This commits FGFR to respond to FGF23, a key hormone in the regulation of mineral ion and vitamin D homeostasis. The role and mechanism of this co-receptor are unknown. Here we present the atomic structure of a 1:1:1 ternary complex that consists of the shed extracellular domain of α-klotho, the FGFR1c ligand-binding domain, and FGF23. In this complex, α-klotho simultaneously tethers FGFR1c by its D3 domain and FGF23 by its C-terminal tail, thus implementing FGF23–FGFR1c proximity and conferring stability. Dimerization of the stabilized ternary complexes and receptor activation remain dependent on the binding of heparan sulfate, a mandatory cofactor of paracrine FGF signalling. The structure of α-klotho is incompatible with its purported glycosidase activity. Thus, shed α-klotho functions as an on-demand non-enzymatic scaffold protein that promotes FGF23 signalling.
The crystal structure of shed ectodomain of α-klotho bound to the FGFR1c ligand-binding domain and FGF23 unveils the mechanism by which klotho co-receptors promote hormonal FGF signalling.
Mechanisms of metabolic hormones
The endocrine fibroblast growth factors (FGF19, FGF21 and FGF23) are circulating hormones that regulate important metabolic and physiological functions in vertebrates. Canonical FGFs require heparan sulfate proteoglycans to activate FGF receptors, but endocrine FGFs instead depend on klotho proteins for this process. There are two klothos, encoded by different genes: β-klotho is essential for FGF19- and FGF21-dependent signaling, whereas α-klotho is required for FGF23-dependent signalling. In this issue, Joseph Schlessinger and colleagues report crystal structures of the β-klotho extracellular domain, in ligand-free form and bound to a C-terminal peptide of FGF21. Moosa Mohammadi and colleagues report the atomic structure of a 1:1:1 ternary complex, which consists of the extracellular domain that is shed from membrane-anchored α-klotho into body fluids, the FGFR1c ligand-binding domain and FGF23. These hormones and their receptors are highly desirable drug targets owing to their central role in metabolism and physiology. Their structures offer the first glimpse of klotho and provide long-awaited mechanistic insights into the signalling pathways that are regulated by endocrine FGFs.
Journal Article