Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
4,730 result(s) for "Body Temperature Regulation"
Sort by:
Too hot? Too cold? : keeping body temperature just right
Explains how people and animals living in different parts of the world survive in hotter and colder climates using remarkable adaptive strategies and behaviors.
l-Menthol mouth rinse or ice slurry ingestion during the latter stages of exercise in the heat provide a novel stimulus to enhance performance despite elevation in mean body temperature
PurposeThis study investigated the effects of l-menthol mouth rinse and ice slurry ingestion on time to exhaustion, when administered at the latter stages (~ 85%) of baseline exercise duration in the heat (35 °C).MethodTen male participants performed four time to exhaustion (TTE) trials on a cycle ergometer at 70% Wmax. In a randomized crossover design, (1) placebo-flavored non-calorific mouth rinse, (2) l-menthol mouth rinse (0.01%), or (3) ice ingestion (1.25 g kg−1), was administered at 85% of participants’ baseline TTE. Time to exhaustion, core and skin temperature, heart rate, rating of perceived effort, thermal comfort and thermal sensation were recorded.ResultsFrom the point of administration at 85% of baseline TTE, exercise time was extended by 1% (placebo, 15 s), 6% (l-menthol, 82 s) and 7% (ice, 108 s), relative to baseline performance (P = 0.036), with no difference between l-menthol and ice (P > 0.05). Core temperature, skin temperature, and heart rate increased with time but did not differ between conditions (P > 0.05). Thermal sensation did not differ significantly but demonstrated a large effect size (P = 0.080; \\[\\eta _{{\\text{p}}}^{2}\\] = 0.260).ConclusionThese results indicate that both thermally cooling and non-thermally cooling oral stimuli have an equal and immediate behavioral, rather than physiological, influence on exhaustive exercise in the heat.
Heartwarming : how our inner thermostat made us human
\"A compelling investigation into the quest to maintain core body temperature-and how it drives genetic and social evolution, civilization, health, and technology. A cup of tea, coffee, or cocoa is calming and comforting-but why? Recent research suggests that temperature, even that derived from holding a hot beverage, can influence our emotions and behaviors. In Heartwarming, social psychologist Hans IJzerman explores temperature and its role in our daily lives through the long lens of evolution. Besides breathing, regulating body temperature is one of the most important tasks for any animal. Like huddling penguins, we humans have long relied each other to maintain our temperatures. Over millennia, this instinct for thermoregulation has driven our social lives. Understanding how temperature affects human sociality leads to fascinating new questions in our changing world: How will climate change impact society? Can thermoregulation keep relationships closer, even across distance? IJzerman offers new insights for therapists, doctors, sufferers of illnesses both mental and physical, and all of us who want to better understand our bodies and our connections. Heartwarming takes readers on a captivating journey through the world, seen from the perspective of coldness and warmth\"-- Provided by publisher.
The effect of 8-day oral taurine supplementation on thermoregulation during low-intensity exercise at fixed heat production in hot conditions of incremental humidity
PurposeTo determine the effect of taurine supplementation on sweating and core temperature responses, including the transition from compensable to uncompensable heat stress, during prolonged low-intensity exercise of a fixed-heat production (~ 200W/m2) in hot conditions (37.5 °C), at both fixed and incremental vapour-pressure.MethodsFifteen females (n = 3) and males (n = 12; 27 ± 5 years, 78 ± 9 kg, V˙O2max 50.3 ± 7.8 mL/kg/min), completed a treadmill walking protocol (~ 200W/m2 heat production [Ḣprod]) in the heat (37.5 ± 0.1 °C) at fixed-(16-mmHg) and ramped-humidity (∆1.5-mmHg/5-min) following 1 week of oral taurine supplementation (50 mg/kg/bm) or placebo, in a double-blind, randomised, cross-over design. Participants were assessed for whole-body sweat loss (WBSL), local sweat rate (LSR), sweat gland activation (SGA), core temperature (Tcore), breakpoint of compensability (Pcrit) and calorimetric heat transfer components. Plasma volume and plasma taurine concentrations were established through pre- and post-trial blood samples.ResultsTaurine supplementation increased WBSL by 26.6% and 5.1% (p = 0.035), LSR by 15.5% and 7.8% (p = 0.013), SGA (1 × 1 cm) by 32.2% and 29.9% (p < 0.001) and SGA (3 × 3 cm) by 22.1% and 17.1% (p = 0.015) during the fixed- and ramped-humidity exercise periods, respectively. Evaporative heat loss was enhanced by 27% (p = 0.010), heat-storage reduced by 72% (p = 0.024) and Pcrit was greater in taurine vs placebo (25.0-mmHg vs 21.7-mmHg; p = 0.002).ConclusionTaurine supplementation increased sweating responses during fixed Ḣprod in hot conditions, prior to substantial heat strain and before the breakpoint of compensability, demonstrating improved thermoregulatory capacity. The enhanced evaporative cooling and reduced heat-storage delayed the subsequent upward inflection in Tcore—represented by a greater Pcrit—and offers a potential dietary supplementation strategy to support thermoregulation.
Caffeine ingestion compromises thermoregulation and does not improve cycling time to exhaustion in the heat amongst males
PurposeCaffeine is a commonly used ergogenic aid for endurance events; however, its efficacy and safety have been questioned in hot environmental conditions. The aim of this study was to investigate the effects of acute caffeine supplementation on cycling time to exhaustion and thermoregulation in the heat.MethodsIn a double-blind, randomised, cross-over trial, 12 healthy caffeine-habituated and unacclimatised males cycled to exhaustion in the heat (35 °C, 40% RH) at an intensity associated with the thermoneutral gas exchange threshold, on two separate occasions, 60 min after ingesting caffeine (5 mg/kg) or placebo (5 mg/kg).ResultsThere was no effect of caffeine supplementation on cycling time to exhaustion (TTE) (caffeine; 28.5 ± 8.3 min vs. placebo; 29.9 ± 8.8 min, P = 0.251). Caffeine increased pulmonary oxygen uptake by 7.4% (P = 0.003), heat production by 7.9% (P = 0.004), whole-body sweat rate (WBSR) by 21% (P = 0.008), evaporative heat transfer by 16.5% (P = 0.006) and decreased estimated skin blood flow by 14.1% (P < 0.001) compared to placebo. Core temperature was higher by 0.6% (P = 0.013) but thermal comfort decreased by − 18.3% (P = 0.040), in the caffeine condition, with no changes in rate of perceived exertion (P > 0.05).ConclusionThe greater heat production and storage, as indicated by a sustained increase in core temperature, corroborate previous research showing a thermogenic effect of caffeine ingestion. When exercising at the pre-determined gas exchange threshold in the heat, 5 mg/kg of caffeine did not provide a performance benefit and increased the thermal strain of participants.
Do frogs drink hot chocolate? : how animals keep warm
\"Do polar bears build homes to keep warm? Do penguins snuggle with a friend? Yes! But their homes aren't made of wood, and penguins don't cuddle on a couch. Instead, these animals -- and many others -- have adapted in amazing ways to survive chilly weather. [This book] is a light-hearted introduction to animal adaptations around the world. Funny interactive questions paired with comic illustrations will leave readers laughing for more!\"-- Back cover.
The effect of alcohol consumption on human physiological and perceptual responses to heat stress: a systematic scoping review
Background Ethyl alcohol (ethanol) consumption is ostensibly known to increase the risk of morbidity and mortality during hot weather and heatwaves. However, how alcohol independently alters physiological, perceptual, and behavioral responses to heat stress remains poorly understood. Therefore, we conducted a systematic scoping review to understand how alcohol consumption affects thermoregulatory responses to the heat. Methods We searched five databases employing the following eligibility criteria, studies must have: 1) involved the oral consumption of ethanol, 2) employed a randomized or crossover-control study design with a control trial consisting of a volume-matched, non-alcoholic beverage, 3) been conducted in healthy adult humans, 4) reported thermophysiological, perceptual, hydration status markers, and/or behavioral outcomes, 5) been published in English, 6) been conducted in air or water at temperatures of > 28°C, 7) involved passive rest or exercise, and 8) been published before October 4th, 2023. Results After removing duplicates, 7256 titles were screened, 29 papers were assessed for eligibility and 8 papers were included in the final review. Across the 8 studies, there were a total of 93 participants (93 male/0 female), the average time of heat exposure was 70 min and average alcohol dose was 0.68 g·kg 1 . There were 23 unique outcome variables analyzed from the studies. The physiological marker most influenced by alcohol was core temperature (lowered with alcohol consumption in 3/4 studies). Additionally, skin blood flow was increased with alcohol consumption in the one study that measured it. Typical markers of dehydration, such as increased urine volume (1/3 studies), mass loss (1/3 studies) and decreased plasma volume (0/2 studies) were not consistently observed in these studies, except for in the study with the highest alcohol dose. Conclusion The effect of alcohol consumption on thermoregulatory responses is understudied, and is limited by moderate doses of alcohol consumption, short durations of heat exposure, and only conducted in young-healthy males. Contrary to current heat-health advice, the available literature suggests that alcohol consumption does not seem to impair physiological responses to heat in young healthy males.
Brown Adipose Tissue in Morbidly Obese Subjects
Cold-stimulated adaptive thermogenesis in brown adipose tissue (BAT) to increase energy expenditure is suggested as a possible therapeutic target for the treatment of obesity. We have recently shown high prevalence of BAT in adult humans, which was inversely related to body mass index (BMI) and body fat percentage (BF%), suggesting that obesity is associated with lower BAT activity. Here, we examined BAT activity in morbidly obese subjects and its role in cold-induced thermogenesis (CIT) after applying a personalized cooling protocol. We hypothesize that morbidly obese subjects show reduced BAT activity upon cold exposure. After applying a personalized cooling protocol for maximal non-shivering conditions, BAT activity was determined using positron-emission tomography and computed tomography (PET-CT). Cold-induced BAT activity was detected in three out of 15 morbidly obese subjects. Combined with results from lean to morbidly obese subjects (n = 39) from previous study, the collective data show a highly significant correlation between BAT activity and body composition (P<0.001), respectively explaining 64% and 60% of the variance in BMI (r = 0.8; P<0.001) and BF% (r = 0.75; P<0.001). Obese individuals demonstrate a blunted CIT combined with low BAT activity. Only in BAT-positive subjects (n = 26) mean energy expenditure was increased significantly upon cold exposure (51.5±6.7 J/s versus 44.0±5.1 J/s, P = 0.001), and the increase was significantly higher compared to BAT-negative subjects (+15.5±8.9% versus +3.6±8.9%, P = 0.001), indicating a role for BAT in CIT in humans. This study shows that in an extremely large range of body compositions, BAT activity is highly correlated with BMI and BF%. BAT-positive subjects showed higher CIT, indicating that BAT is also in humans involved in adaptive thermogenesis. Increasing BAT activity could be a therapeutic target in (morbid) obesity.