Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
482
result(s) for
"Bone erosions"
Sort by:
Bone as a Target Organ in Rheumatic Disease: Impact on Osteoclasts and Osteoblasts
2016
Dysregulated bone remodeling occurs when there is an imbalance between bone resorption and bone formation. In rheumatic diseases, including rheumatoid arthritis (RA) and seronegative spondyloarthritis, systemic and local factors disrupt the process of physiologic bone remodeling. Depending upon the local microenvironment, cell types, and local mechanical forces, inflammation results in very different effects on bone, promoting bone loss in the joints and in periarticular and systemic bone in RA and driving bone formation at enthesial and periosteal sites in diseases such as ankylosing spondylitis (AS), included within the classification of axial spondyloarthritis. There has been a great deal of interest in the role of osteoclasts in these processes and much has been learned over the past decade about osteoclast differentiation and function. It is now appreciated that osteoblast-mediated bone formation is also inhibited in the RA joint, limiting the repair of erosions. In contrast, osteoblasts function to produce new bone in AS. The Wnt and BMP signaling pathways have emerged as critical in the regulation of osteoblast function and the outcome for bone in rheumatic diseases, and these pathways have been implicated in both bone loss in RA and bone formation in AS. These pathways provide potential novel approaches for therapeutic intervention in diseases in which inflammation impacts bone.
Journal Article
The importance of ultrasound in identifying and differentiating patients with early inflammatory arthritis: a narrative review
by
Kaeley, Gurjit S.
,
Bakewell, Catherine
,
Deodhar, Atul
in
Algorithms
,
Arthritis
,
Bone erosions
2020
Early differentiation between different types of inflammatory arthritis and subsequent initiation of modern treatments can improve patient outcomes by reducing disease activity and preventing joint damage. Routine clinical evaluation, laboratory testing, and radiographs are typically sufficient for differentiating between inflammatory and predominantly degenerative arthritis (e.g., osteoarthritis). However, in some patients with inflammatory arthritis, these techniques fail to accurately identify the type of early-stage disease. Further evaluation by ultrasound imaging can delineate the inflammatory arthritis phenotype present. Ultrasound is a noninvasive, cost-effective method that enables the evaluation of several joints at the same time, including functional assessments. Further, ultrasound can visualize pathophysiological changes such as synovitis, tenosynovitis, enthesitis, bone erosions, and crystal deposits at a subclinical level, which makes it an effective technique to identify and differentiate most common types of inflammatory arthritis. Limitations associated with ultrasound imaging should be considered for its use in the differentiation and diagnosis of inflammatory arthritides.
Journal Article
Skeletal complications of rheumatoid arthritis
2017
Rheumatoid arthritis (RA) is associated with local and systemic inflammation that induces many changes in the skeletal health. Locally, periarticular bone loss and juxta-articular bone erosions may occur while joint ankylosis, generalized bone loss, osteoporosis, and fractures may develop secondary to inflammation. The aim of this narrative review is to summarize the clinical evidence for abnormal skeletal health in RA, the effects of disease modifying anti-rheumatic drugs (DMARDS) on bone health, and the effects of drugs for the prevention or treatment of osteoporosis in the RA population.
Journal Article
Rheumatoid Arthritis in the View of Osteoimmunology
by
Coury, Fabienne
,
Auréal, Mélanie
,
Machuca-Gayet, Irma
in
Autoantibodies
,
bone erosion
,
Bone growth
2020
Rheumatoid arthritis is characterized by synovial inflammation and irreversible bone erosions, both highlighting the immense reciprocal relationship between the immune and bone systems, designed osteoimmunology two decades ago. Osteoclast-mediated resorption at the interface between synovium and bone is responsible for the articular bone erosions. The main triggers of this local bone resorption are autoantibodies directed against citrullinated proteins, as well as pro-inflammatory cytokines and the receptor activator of nuclear factor-κB ligand, that regulate both the formation and activity of the osteoclast, as well as immune cell functions. In addition, local bone loss is due to the suppression of osteoblast-mediated bone formation and repair by inflammatory cytokines. Similarly, inflammation affects systemic bone remodeling in rheumatoid arthritis with the net increase in bone resorption, leading to systemic osteoporosis. This review summarizes the substantial progress that has been made in understanding the pathophysiology of systemic and local bone loss in rheumatoid arthritis.
Journal Article
Osteoporosis in Rheumatoid Arthritis: Dangerous Liaisons
by
García-Castañeda, Noelia
,
Castañeda, Santos
,
Valero, Cristina
in
Antibodies
,
Bone density
,
bone erosions
2020
Osteoporosis has been classically considered a comorbidity of rheumatoid arthritis (RA). However, recent advances in the pathogenesis of osteoporosis in RA have shown a close interplay between cells of the immune system and those involved in bone remodeling, introducing new actors into the classic route in which osteoclast activation is related to the RANK/RANKL/OPG pathway. In fact, the inflammatory state in early stages of RA, mediated by interleukin (IL)-1, IL-6, IL-8 and tumor necrosis factor (TNF)-α has the ability to activate and differentiate osteoclasts not only through their relationship with RANKL, but also through the Wnt/DKK1/sclerostin pathway, leading to bone loss. The role of synovial fibroblasts and activated T lymphocytes in the expression of the RANKL system and its connection to bone destruction is also depicted. In addition, autoantibodies such as rheumatoid factor and anti-citrullinated protein antibodies are other pathogenic mechanisms for the development of bone erosions and systemic osteoporosis in RA, even before the onset of arthritis. The aim of this review is to unravel the relationship between different factors involved in the development of osteoporosis in RA patients, both the classic factors and the most novel, based on the relationship of autoantibodies with bone remodeling. Furthermore, we propose that bone mineral density measured by different techniques may be helpful as a biomarker of severity in early arthritis patients.
Journal Article
Osteoimmunology of Bone Loss in Inflammatory Rheumatic Diseases
by
Coury, Fabienne
,
Peyruchaud, Olivier
,
Machuca-Gayet, Irma
in
Arthritis
,
Autoantibodies
,
bone erosion
2019
Over the past two decades, the field of osteoimmunology has emerged in response to a range of evidence demonstrating the reciprocal relationship between the immune system and bone. In particular, localized bone loss, in the form of joint erosions and periarticular osteopenia, as well as systemic osteoporosis, caused by inflammatory rheumatic diseases including rheumatoid arthritis, the prototype of inflammatory arthritis has highlighted the importance of this interplay. Osteoclast-mediated resorption at the interface between synovium and bone is responsible for the joint erosion seen in patients suffering from inflammatory arthritis. Clinical studies have helped to validate the impact of several pathways on osteoclast formation and activity. Essentially, the expression of pro-inflammatory cytokines as well as Receptor Activator of Nuclear factor κB Ligand (RANKL) is, both directly and indirectly, increased by T cells, stimulating osteoclastogenesis and resorption through a crucial regulator of immunity, the Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). Furthermore, in rheumatoid arthritis, autoantibodies, which are accurate predictors both of the disease and associated structural damage, have been shown to stimulate the differentiation of osteoclasts, resulting in localized bone resorption. It is now also evident that osteoblast-mediated bone formation is impaired by inflammation both in joints and the skeleton in rheumatoid arthritis. This review summarizes the substantial progress that has been made in understanding the pathophysiology of bone loss in inflammatory rheumatic disease and highlights therapeutic targets potentially important for the cure or at least an alleviation of this destructive process.
Journal Article
Simultaneous quantification of bone erosions and enthesiophytes in the joints of patients with psoriasis or psoriatic arthritis - effects of age and disease duration
2018
Background
Comprehensive simultaneous quantification of bone erosion and enthesiophytes in the joints of patients with psoriatic arthritis (PsA) has not been performed. Herein, we aimed to compare the extent of bone erosion and enthesiophytes in patients with PsA, psoriasis (PSO) and healthy controls, assess the influence of age and disease duration on the development of erosions and enthesiophytes and define their impact on physical function.
Methods
Patients with PsA or with PSO and controls were analysed by high-resolution peripheral quantitative computed tomography (HR-pQCT). The extent of bone erosions and enthesiophytes was assessed and plotted according to different categories of age, duration of PSO and duration of PsA, respectively. In addition, demographic and disease-specific data, including physical function (health assessment questionnaire) were collected.
Results
A total of 203 patients were analysed; 101 had PsA, 55 had PSO and 47 were healthy individuals. Patients with PsA had significantly more and larger erosions (
p
= 0.002/
p
= 0.003) and enthesiophytes (
p
< 0.001) compared to patients with PSO and healthy controls. Patients with PSO and healthy controls did not differ in erosions, while enthesiophytes were more frequent in patients with PSO than in healthy controls. Bone erosions, but not enthesiophytes, showed strong age-dependency in all three groups. In contrast, enthesiophytes were mostly influenced by the duration of PSO and PsA and, in contrast to bone erosions, were associated with poorer physical function.
Conclusions
Bone erosions are age-dependent, enhanced in PsA and increase with disease duration. Enthesiophytes are less age-dependent, are enhanced in both PSO and PsA and strongly influenced by disease duration. Enthesiophytes impact physical function in PsA suggesting the need for early therapeutic interventions to prevent damage.
Journal Article
From Crosstalk between Immune and Bone Cells to Bone Erosion in Infection
2019
Bone infection and inflammation leads to the infiltration of immune cells at the site of infection, where they modulate the differentiation and function of osteoclasts and osteoblasts by the secretion of various cytokines and signal mediators. In recent years, there has been a tremendous effort to understand the cells involved in these interactions and the complex pathways of signal transduction and their ultimate effect on bone metabolism. These crosstalk mechanisms between the bone and immune system finally emerged, forming a new field of research called osteoimmunology. Diseases falling into the category of osteoimmunology, such as osteoporosis, periodontitis, and bone infections are considered to have a significant implication in mortality and morbidity of patients, along with affecting their quality of life. There is a much-needed research focus in this new field, as the reported data on the immunomodulation of immune cells and their signaling pathways seems to have promising therapeutic benefits for patients.
Journal Article
Transcriptomic characterization of classical monocytes highlights the involvement of immuno-inflammation in bone erosion in Rheumatoid Arthritis
by
Perez, Mariana Ortega
,
Caparbo, Valéria Falco
,
Borba, Eduardo Ferreira
in
Adaptive immunity
,
Autoimmune diseases
,
Binomial distribution
2023
IntroductionEvidence-based data suggest that under inflammatory conditions, classical monocytes are the main source of osteoclasts and might be involved in bone erosion pathophysiology. Here, we analyze the transcriptomic profile of classical monocytes in erosive and non-erosive rheumatoid arthritis patients in order to better understand their contribution to bone erosion.MethodsThirty-nine premenopausal RA patients were consecutively enrolled and divided into two groups based on the presence of bone erosions on hand joints. Classical monocytes were isolated from peripheral blood through negative selection, and RNA-seq was performed using a poly-A enrichment kit and Illumina® platform. Classical monocytes transcriptome from healthy age-matched women were also included to identify differentially expressed genes (DEGs). Therefore, gene sets analysis was performed to identify the enriched biological pathways.ResultsRNA-seq analysis resulted in the identification of 1,140 DEGs of which 89 were up-regulated and 1,051 down-regulated in RA patients with bone erosion compared to those without bone erosions. Among up-regulated genes, there was a highlighted expression of IL18RAP and KLF14 related to the production of pro-inflammatory cytokines, innate and adaptive immune response. Genes related to collagen metabolism ( LARP6 ) and bone formation process ( PAPPA ) were down-regulated in RA patients with erosions. Enriched pathways in patients with erosions were associated with greater activation of immune activation, and inflammation. Interestingly, pathways associated with osteoblast differentiation and regulation of Wnt signaling were less activated in RA patients with erosions.ConclusionThese findings suggest that alterations in expression of monocyte genes related to the inflammatory process and impairment of bone formation might have an important role in the pathophysiology of bone erosions in RA patients.
Journal Article
Preferable effect of CTLA4-Ig on both bone erosion and bone microarchitecture in rheumatoid arthritis revealed by HR-pQCT
by
Kawashiri, Shin-ya
,
Okada, Akitomo
,
Kawakami, Atsushi
in
692/4023/1670/498
,
692/698/1671/63
,
Abatacept
2024
This exploratory study aimed to examine the impact of abatacept treatment on bone structure in patients with rheumatoid arthritis (RA) using high-resolution peripheral quantitative computed tomography (HR-pQCT). RA patients initiating either abatacept or newly introduced csDMARDs were enrolled in this prospective, non-randomized, two-group study. Bone structure in the 2nd and 3rd metacarpal heads was assessed using HR-pQCT at 0, 6, and 12 months after enrollment. Synovitis was evaluated using musculoskeletal ultrasound and MRI. The adjusted mean between-group differences (abatacept–csDMARDs group) were estimated using a mixed-effect model. Thirty-five patients (abatacept group: n = 15; csDMARDs group: n = 20) were analyzed. Changes in erosion volume, depth and width were numerically smaller in the abatacept group compared to the csDMARDs group (adjusted mean between-group differences: − 1.86 mm
3
, − 0.02 mm, and − 0.09 mm, respectively). Over a 12-month period, 5 erosions emerged in the csDMARDs group, while only 1 erosion appeared in the abatacept group. Compared to csDMARDs, abatacept better preserved bone microarchitecture; several components of bone microarchitecture were significantly worsened at 6 months in the csDMARDs group, but were not deteriorated at 6 months in the abatacept group. Changes in synovitis scores were similar between the two treatment groups. Our results indicate that abatacept prevented the progression of bone erosion including new occurrence, and also prevented worsening of bone strength independently with synovitis compared to csDMARDs including MTX. Thus, abatacept treatment may provide benefits not only in inhibiting the progress of bone erosion but also in preventing bone microarchitectural deterioration.
Journal Article