Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
148 result(s) for "Bordetella Infections - veterinary"
Sort by:
Characterisation of Bordetella bronchiseptica isolated from rabbits in Fujian, China
Bordetella bronchiseptica is a potential zoonotic pathogen, which mainly causes respiratory diseases in humans and a variety of animal species. B. bronchiseptica is one of the important pathogens isolated from rabbits in Fujian Province. However, the knowledge of the epidemiology and characteristics of the B. bronchiseptica in rabbits in Fujian Province is largely unknown. In this study, 219 B. bronchiseptica isolates recovered from lung samples of dead rabbits with respiratory diseases in Fujian Province were characterised by multi-locus sequencing typing, screening virulence genes and testing antimicrobial susceptibility. The results showed that the 219 isolates were typed into 11 sequence types (STs) including five known STs (ST6, ST10, ST12, ST14 and ST33) and six new STs (ST88, ST89, ST90, ST91, ST92 and ST93) and the ST33 (30.14%, 66/219), ST14 (26.94%, 59/219) and ST12 (16.44%, 36/219) were the three most prevalent STs. Surprisingly, all the 219 isolates carried the five virulence genes (fhaB, prn, cyaA, dnt and bteA) in the polymerase chain reaction screening. Moreover, the isolates were resistant to cefixime, ceftizoxime, cefatriaxone and ampicillin at rates of 33.33%, 31.05%, 11.87% and 3.20%, respectively. This study showed the genetic diversity of B. bronchiseptica in rabbits in Fujian Province, and the colonisation of the human-associated ST12 strain in rabbits in Fujian Province. The results might be useful for monitoring the epidemic strains, developing preventive methods and preventing the transmission of epidemic strains from rabbits to humans.
Genomic characterization and drug resistance of Bordetella pseudohinzii first isolated from wild niviventer
Background Niviventer , a rodent species widely distributed in Asian forests, serves as a significant reservoir for pathogens. Bordetella pseudohinzii ( B. pseudohinzii ), a recently identified Bordetella species with unclear pathogenic potential, poses challenges in species identification and understanding of its pathogenicity, its biological traits and antibiotic resistance are not well understood. Methods B. pseudohinzii (strains 21F10, 22F12, and 27F25) were isolated from lung tissue of wild niviventer rodents in Guizhou, China. Initial identification was performed using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) and 16 S rRNA gene sequencing. A phylogenetic tree based on the 16 S rRNA gene sequences was constructed using the neighbor-joining method implemented in MEGA 11. Whole-genome sequencing (WGS) was conducted on all three strains, and strain 21F10 underwent hybrid assembly of second- and third-generation sequencing to achieve high-quality sequences. Average Nucleotide Identity (ANI) and digital DNA-DNA hybridization (dDDH) were used as gold standards for strain identification, with thresholds set at 95% and 70%, respectively. Gene annotation was performed using nine databases, including KEGG, VFDB, CARD, PHI, COG, and NR. Antimicrobial susceptibility testing was carried out using the drug-sensitive plate method. Results Initial MALDI-TOF MS identification misclassified the strains as B. avium and B. hinzii . However, PCR amplification of the 16 S rRNA gene (primers 27 F and 1492R) revealed that the strains were identified as B. hinzii (identity > 99%). Further analysis of the 16 S rRNA gene sequences obtained from WGS showed identities greater than 99% with both B. pseudohinzii and B. hinzii . Phylogenetic analysis of the 16 S rRNA gene sequences showed that the strains were closely related to B. hinzii , followed by B. pseudohinzii . Ultimately, the ANI values of all three strains with B. pseudohinzii were greater than 95%, and dDDH values exceeded 70%, confirming the strains as B. pseudohinzii . Strain 21F10 exhibited notable findings in terms of virulence factors and antibiotic resistance genes. Antimicrobial susceptibility testing revealed significant resistance to several cephalosporins (cefoxitin, cefuroxime, cefotaxime, cefazolin, and ceftiofur). The 16 S rRNA and WGS of strain 21F10 have been deposited in GenBank and Genome Sequence Archive (GSA)under accession numbers PQ881859 and CRA022358, respectively. Conclusion The first isolation of B. pseudohinzii from the lung tissue of wild niviventer was reported, and the limitations of traditional methods for identifying B. pseudohinzii were demonstrated. We highlight the superiority of WGS for accurate species identification. The findings reveal a complex pathogenic profile and notable antibiotic resistance, providing important insights for the future prevention and treatment of B. pseudohinzii infections in humans, as well as underscoring the need for monitoring B. pseudohinzii in rodent populations. Clinical trial number Not applicable.
Effect of carbohydrates on the adhesion of Bordetella bronchiseptica to the respiratory epithelium in rabbits
This study proposes an ecological approach for preventing respiratory tract infections caused by Bordetella bronchiseptica in mammals using a mixture of carbohydrates. In an in vivo study, 51-day-old New Zealand rabbits were treated with a solution containing 1 × 107 CFUs of B. bronchiseptica and 250 μg of one of the following carbohydrates: N acetylglucosamine (GlcNAc), N acetylgalactosamine (GalNAc), alpha methyl mannose (AmeMan), alpha methyl glucose (AmeGlc) and sialic acid (Neu5AC). Positive (B. bronchiseptica) and negative (Physiological Saline Solution (PSS)) controls were included. Animals treated with GlcNAc or AmeGlc showed no clinical signs of infection and exhibited a significant reduction (p < 0.05) in the severity of microscopic lesions evaluated in the nasal cavity and lung compared with the positive controls. Additionally, the presence of bacteria was not detected through microbiological isolation or PCR in the lungs of animals treated with these sugars. Use of a mixture of GlcNAc and AmeGlc resulted in greater inhibition of microscopic lesions, with a significant reduction (p < 0.05) in the severity of these lesions compared to the results obtained using individual sugars. Furthermore, the bacterium was not detected through microbiological isolation, Polymerase Chain Reaction (PCR) or indirect immunoperoxidase (IIP) in this group.
Characterization of a Unique Bordetella bronchiseptica vB_BbrP_BB8 Bacteriophage and Its Application as an Antibacterial Agent
Bordetella bronchiseptica, an emerging zoonotic pathogen, infects a broad range of mammalian hosts. B. bronchiseptica-associated atrophic rhinitis incurs substantial losses to the pig breeding industry. The true burden of human disease caused by B. bronchiseptica is unknown, but it has been postulated that some hypervirulent B. bronchiseptica isolates may be responsible for undiagnosed respiratory infections in humans. B. bronchiseptica was shown to acquire antibiotic resistance genes from other bacterial genera, especially Escherichia coli. Here, we present a new B. bronchiseptica lytic bacteriophage—vB_BbrP_BB8—of the Podoviridae family, which offers a safe alternative to antibiotic treatment of B. bronchiseptica infections. We explored the phage at the level of genome, physiology, morphology, and infection kinetics. Its therapeutic potential was investigated in biofilms and in an in vivo Galleria mellonella model, both of which mimic the natural environment of infection. The BB8 is a unique phage with a genome structure resembling that of T7-like phages. Its latent period is 75 ± 5 min and its burst size is 88 ± 10 phages. The BB8 infection causes complete lysis of B. bronchiseptica cultures irrespective of the MOI used. The phage efficiently removes bacterial biofilm and prevents the lethality induced by B. bronchiseptica in G. mellonella honeycomb moth larvae.
Investigation of the Correlation Between ELISA and Serum Amyloid A in the Diagnosis of Bordetella bronchiseptica in Dogs
ABSTRACT Background Bordetella bronchiseptica is an essential bacterial pathogen characterized by chronic respiratory disease in dogs known as Kennel cough. The presence of causative antibodies in animals can also be detected by lipopolysaccharide antigen‐based enzyme linked immunosorbent assay (ELISA). In recent years, it has been determined that there is a significant relationship between acute phase proteins and diseases, and disease follow‐up can be done within the framework of this relationship. Methods In this study, blood sera from 150 dogs in an animal shelter in Van province were evaluated for B. bronchiseptica by the homemade ELISA method, and their correlations with serum amyloid A (SAA) were investigated. Blood serum samples were analysed for antibodies against B. bronchiseptica using a homemade ELISA method. Positive animals were also molecularly confirmed using nasal swabs by PCR. A commercial ELISA kit determined SAA levels in blood sera. Results Eighteen (12%) of the analysed blood serum samples were found positive by the homemade ELISA method. SAA concentrations in the positive blood sera were elevated from 12.7 to ≤38.98 mg/L. SAA concentrations in blood sera serologically positive for B. bronchiseptica were statistically significant. Conclusions In this study, in which the relationship between SAA concentration and B. bronchiseptica was investigated for the first time in Turkey, it was concluded that SAA concentration analysis may help diagnose and monitor the disease. In addition, the presence and prevalence of this critical and zoonotic agent causing chronic respiratory tract disease in dogs in Van province was revealed for the first time in this study. A study in Van, Turkey examined Bordetella bronchiseptica in shelter dogs using ELISA and PCR. Overall, 12% of blood samples tested positive. Serum amyloid A (SAA) levels were significantly elevated in positive cases, suggesting SAA could be a useful diagnostic marker for this chronic respiratory disease‐causing bacterial pathogen.
Bordetella pseudohinzii targets cilia and impairs tracheal cilia-driven transport in naturally acquired infection in mice
Several species of the Gram-negative genus Bordetella are the cause of respiratory infections in mammals and birds, including whooping cough (pertussis) in humans. Very recently, a novel atypical species, Bordetella pseudohinzii , was isolated from laboratory mice. These mice presented no obvious clinical symptoms but elevated numbers of neutrophils in bronchoalveolar lavage fluid and inflammatory signs in histopathology. We noted that this species can occur at high prevalence in a mouse facility despite regular pathogen testing according to the FELASA-recommendations. Affected C57BL/6 J mice had, in addition to the reported pulmonary alterations, tracheal inflammation with reduced numbers of ciliated cells, slower ciliary beat frequency, and largely (>50%) compromised cilia-driven particle transport speed on the mucosal surface, a primary innate defence mechanism. In an in vitro -model, Bordetella pseudohinzii attached to respiratory kinocilia, impaired ciliary function within 4 h and caused epithelial damage within 24 h. Regular testing for this ciliotropic Bordetella species and excluding it from colonies that provide mice for lung research shall be recommended. On the other hand, controlled colonization and infection with Bordetella pseudohinzii may serve as an experimental model to investigate mechanisms of mucociliary clearance and microbial strategies to escape from this primary innate defence response.
Food provisioning alters infection dynamics in populations of a wild rodent
While pathogens are often assumed to limit the growth of wildlife populations, experimental evidence for their effects is rare. A lack of food resources has been suggested to enhance the negative effects of pathogen infection on host populations, but this theory has received little investigation. We conducted a replicated two-factor enclosure experiment, with introduction of the bacterium Bordetella bronchiseptica and food supplementation, to evaluate the individual and interactive effects of pathogen infection and food availability on vole populations during a boreal winter. We show that prior to bacteria introduction, vole populations were limited by food availability. Bordetella bronchiseptica introduction then reduced population growth and abundance, but contrary to predictions, primarily in food supplemented populations. Infection prevalence and pathological changes in vole lungs were most common in food supplemented populations, and are likely to have resulted from increased congregation and bacteria transmission around feeding stations. Bordetella bronchiseptica-infected lungs often showed protozoan co-infection (consistent with Hepatozoon erhardovae), together with more severe inflammatory changes. Using a multidisciplinary approach, this study demonstrates a complex picture of interactions and underlying mechanisms, leading to population-level effects. Our results highlight the potential for food provisioning to markedly influence disease processes in wildlife mammal populations.
Detection and Whole-Genome Characteristics of Bordetella trematum Isolated from Captive Snakes
Bordetella trematum is a rare member of the genus Bordetella, primarily associated with human wound infections rather than respiratory diseases. The bacterium has been isolated from various clinical specimens, including ear inflammatory discharge, diabetic ulcers, and chronic wounds. The study aimed to characterize the genomes and antimicrobial resistance (AMR) profiles of B. trematum obtained from the fecal samples of asymptomatic highland eyelash pit vipers (Bothriechis schlegelii). The identification was conducted using MALDI-TOF mass spectrometry and biochemical tests. AMR was assessed using the microbroth dilution method, while whole-genome sequencing was performed on the Illumina NextSeq platform. The isolates displayed characteristic B. trematum biochemical features and demonstrated a resistance to cefotaxime, ciprofloxacin, and trimethoprim, while one also exhibited a resistance to ceftazidime. The whole-genome sequencing and comparison with limited public data revealed a high diversity within B. trematum, reaching >48,000 single nucleotide polymorphisms (SNPs), with 64 SNP differentiating tested snake isolates and thus, being considered epidemiologically unrelated. This is the first report of B. trematum isolated from an animal source in Europe. The findings provide valuable insights into this rare bacterium’s phenotypic and genomic characteristics, addressing an important knowledge gap in its ecology and AMR profile.
Evolution of Bordetellae from Environmental Microbes to Human Respiratory Pathogens: Amoebae as a Missing Link
The genus comprises several bacterial species that colonize the respiratory tract of mammals. It includes , a human-restricted pathogen that is the causative agent of Whooping Cough. In contrast, the closely related species colonizes a broad range of animals as well as immunocompromised humans. Recent metagenomic studies have identified known and novel bordetellae isolated from different environmental sources, providing a new perspective on their natural history. Using phylogenetic analysis, we have shown that human and animal pathogenic bordetellae have most likely evolved from ancestors that originated from soil and water. Our recent study found that can evade amoebic predation and utilize as an expansion and transmission vector, which suggests that the evolutionary pressure to evade the amoebic predator enabled the rise of bordetellae as respiratory pathogens. Interactions with amoeba may represent the starting point for bacterial adaptation to eukaryotic cells. However, as bacteria evolve and adapt to a novel host, they can become specialized and restricted to a specific host. is known to colonize and cause infection only in humans, and this specialization to a closed human-to-human lifecycle has involved genome reduction and the loss of ability to utilize amoeba as an environmental reservoir. The discoveries from studying the interaction of species with amoeba will elicit a better understanding of the evolutionary history of these and other important human pathogens.
Factors associated with upper respiratory tract disease caused by feline herpesvirus, feline calicivirus, Chlamydophila felis and Bordetella bronchiseptica in cats: experience from 218 European catteries
A full history of the management practices and the prevalence of upper respiratory tract disease (URTD) at 218 rescue shelters, breeding establishments and private households with five or more cats was recorded. Oropharyngeal and conjunctival swabs and blood samples were taken from 1748 cats. The prevalences of feline herpesvirus (FHV), feline calicivirus (FCV), Chlamydophila felis and Bordetella bronchiseptica were determined by PCR on swab samples. An ELISA was applied to determine the prevalence of antibodies to B bronchiseptica. The rates of detection by PCR of each pathogen in the cats in catteries with and without ongoing URTD were, respectively, FHV 16 per cent and 8 per cent; FCV 47 per cent and 29 per cent; C felis 10 per cent and 3 per cent; and B bronchiseptica 5 per cent and 1·3 per cent; the seroprevalences of B bronchiseptica were 61 per cent and 41 per cent, respectively. There was evidence that FHV, FCV and B bronchiseptica played a role in URTD. The risk factors associated with the disease were less than excellent hygiene, contact with dogs with URTD, and larger numbers of cats in the cattery or household.