Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
26
result(s) for
"Bosten Lake Basin"
Sort by:
Land use modeling and carbon storage projections of the Bosten Lake Basin in China from 1990 to 2050 across multiple scenarios
2024
Given the escalating issue of global climate change, it is imperative to comprehend and quantify the effects of land use change on carbon storage (CS), which pertains not only to the preservation of ecosystem functions but also directly influences the equilibrium and stability of the global carbon cycle. This study examines the correlation between CS and land use change, forecasts the future spatial distribution of CS, and offers a reference for the rational planning of watershed space. Focusing on the Bosten Lake Basin of Xinjiang in China, employing the land use simulation (PLUS) model and the integrated valuation of ecosystem services and trade-offs (InVEST) model to forecast the spatial distribution of carbon stocks across three developmental scenarios, while also examining the shift in the center of gravity of CS and the autocorrelation of their spatial distribution. The findings derived from the study are as follows: (1) From 1990 to 2020, the predominant land use type in the Bosten Lake Basin was grassland, while there was an upward trend in the areas of cropland, forest land, built-up land, and wetland, alongside a downward trend in the areas of grassland, water, and unused land. (2) In the long term, the regional CS exhibits an upward trend, with the most significant increase anticipated in the EPS scenario. Grassland constitutes the most extensive carbon reservoir in the Bosten Lake Basin, while wetlands exhibit the highest carbon sequestration potential. (3) The alteration in the center of gravity of CS is associated with the expansion or reduction of the major regional carbon reservoirs and types characterized by significant carbon sequestration potential. (4) In the long term, the spatial correlation of CS in the Bosten Lake Basin exhibits a consistent upward trend, with the most pronounced spatial correlation observed under EPS.
Journal Article
Modelling water yield with the InVEST model in a data scarce region of northwest China
2020
The Bosten Lake basin is an important arid region of northwest China, and has exhibited a declining trend in both lake area and level of water during recent decades. Reliable information on water yield, an important attribute of available water resources in a region, is vital to assess the potential for socio-economic development. The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model is applied here to simulate water yield in the Bosten Lake basin. The spatial and temporal dynamics of water yield, and the response of water yield to land use and precipitation change, are analysed for the period 1985 to 2015. The results show that, overall, water yield increased during 1985–2015, and that the magnitude of change was greater in the eastern part of the region. The water yield capacity, positively correlated with precipitation, is highest under grassland vegetation and lowest in cultivated and unused land. The paper demonstrates that statistical downscaling and climate reanalysis data can be used in the InVEST model to improve the accuracy of simulated water yield in data scarce regions.
Journal Article
Analysis of surface water area dynamics and driving forces in the Bosten Lake basin based on GEE and SEM for the period 2000 to 2021
by
Shi, Jingchao
,
Chan, Ngai Weng
,
Zhang, Fei
in
Anthropogenic factors
,
Aquatic Pollution
,
Arid lands
2024
As an inland dryland lake basin, the rivers and lakes within the Lake Bosten basin provide scarce but valuable water resources for a fragile environment and play a vital role in the development and sustainability of the local societies. Based on the Google Earth Engine (GEE) platform, combined with the geographic information system (GIS) and remote sensing (RS) technology, we used the index WI2019 to extract and analyze the water body area changes of the Bosten Lake basin from 2000 to 2021 when the threshold value is −0.25 and the slope mask is 8°. The driving factors of water body area changes were also analyzed using the partial least squares-structural equation model (PLS-SEM). The result shows that in the last 20 years, the area of water bodies in the Bosten Lake basin generally fluctuated during the dry, wet, and permanent seasons, with a decreasing trend from 2000 to 2015 and an increasing trend between 2015 and 2019 followed by a steadily decreasing trend afterward. The main driver of the change in wet season water bodies in the Bosten Lake basin is the climatic factors, with anthropogenic factors having a greater influence on the water body area of dry season and permanent season than that of wet season. Our study achieved an accurate and convenient extraction of water body area and drivers, providing up-to-date information to fully understand the spatial and temporal variation of surface water body area and its drivers in the basin, which can be used to effectively manage water resources.
Journal Article
Satellite-Based Precipitation Datasets Evaluation Using Gauge Observation and Hydrological Modeling in a Typical Arid Land Watershed of Central Asia
2021
Hydrological modeling has always been a challenge in the data-scarce watershed, especially in the areas with complex terrain conditions like the inland river basin in Central Asia. Taking Bosten Lake Basin in Northwest China as an example, the accuracy and the hydrological applicability of satellite-based precipitation datasets were evaluated. The gauge-adjusted version of six widely used datasets was adopted; namely, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (CDR), Climate Hazards Group Infrared Precipitation with Stations (CHIRPS), Global Precipitation Measurement Ground Validation National Oceanic and Atmospheric Administration Climate Prediction Center (NOAA CPC) Morphing Technique (CMORPH), Integrated Multi-Satellite Retrievals for GPM (GPM), Global Satellite Mapping of Precipitation (GSMaP), the Tropical Rainfall Measuring Mission (TRMM) and Multi-satellite Precipitation Analysis (TMPA). Seven evaluation indexes were used to compare the station data and satellite datasets, the soil and water assessment tool (SWAT) model, and four indexes were used to evaluate the hydrological performance. The main results were as follows: 1) The GPM and CDR were the best datasets for the daily scale and monthly scale rainfall accuracy evaluations, respectively. 2) The performance of CDR and GPM was more stable than others at different locations in a watershed, and all datasets tended to perform better in the humid regions. 3) All datasets tended to perform better in the summer of a year, while the CDR and CHIRPS performed well in winter compare to other datasets. 4) The raw data of CDR and CMORPH performed better than others in monthly runoff simulations, especially CDR. 5) Integrating the hydrological performance of the uncorrected and corrected data, all datasets have the potential to provide valuable input data in hydrological modeling. This study is expected to provide a reference for the hydrological and meteorological application of satellite precipitation datasets in Central Asia or even the whole temperate zone.
Journal Article
Temporal and spatial variation and prediction of water yield and water conservation in the Bosten Lake Basin based on the PLUS-InVEST model
2024
To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds, this study focused on the Bosten Lake Basin, which is situated in the arid region of Northwest China. The research was based on land use/land cover (LULC), natural, socioeconomic, and accessibility data, utilizing the Patch-level Land Use Simulation (PLUS) and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) models to dynamically assess LULC change and associated variations in water yield and water conservation. The analyses included the evaluation of contribution indices of various land use types and the investigation of driving factors that influence water yield and water conservation. The results showed that the change of LULC in the Bosten Lake Basin from 2000 to 2020 showed a trend of increasing in cultivated land and construction land, and decreasing in grassland, forest, and unused land. The unused land of all the three predicted scenarios of 2030 (S1, a natural development scenario; S2, an ecological protection scenario; and S3, a cultivated land protection scenario) showed a decreasing trend. The scenarios S1 and S3 showed a trend of decreasing in grassland and increasing in cultivated land; while the scenario S2 showed a trend of decreasing in cultivated land and increasing in grassland. The water yield of the Bosten Lake Basin exhibited an initial decline followed by a slight increase from 2000 to 2020. The areas with higher water yield values were primarily located in the northern section of the basin, which is characterized by higher altitude. Water conservation demonstrated a pattern of initial decrease followed by stabilization, with the northeastern region demonstrating higher water conservation values. In the projected LULC scenarios of 2030, the estimated water yield under scenarios S1 and S3 was marginally greater than that under scenario S2; while the level of water conservation across all three scenarios remained rather consistent. The results showed that Hejing County is an important water conservation function zone, and the eastern part of the Xiaoyouledusi Basin is particularly important and should be protected. The findings of this study offer a scientific foundation for advancing sustainable development in arid watersheds and facilitating efficient water resource management.
Journal Article
Accounting of Grassland Ecosystem Assets and Assessment of Sustainable Development Potential in the Bosten Lake Basin
by
Wang, Yang
,
Zhang, Zhichao
,
Li, Zhoukang
in
Assets (Accounting)
,
Basins (Geology)
,
Biodiversity
2025
Assessing the ecosystem service value (ESV) of grasslands is crucial for sustainable resource management and environmental conservation. This study evaluates the spatiotemporal changes in grassland ecosystem services in the Bosten Lake Basin using long-term land use data (2000–2022). Employing the Patch-generating Land Use Simulation (PLUS) model, we develop three future scenarios—natural development, ecological protection, and economic priority—to predict grassland utilization trends. The findings reveal a continuous decline in grassland area and ecosystem service values, driven by climate change and human activities. Compared with 2022, all three scenarios indicate further degradation, but ecological protection measures significantly mitigate ESV loss. This study provides scientific insights for sustainable land management and policy-making, contributing to ecological restoration strategies under climate change impacts. The findings reveal the following: (1) Over the 22-year period, the grassland area in the Bosten Lake Basin has experienced an overall decline. Notably, the area of plain desert steppe grassland expanded from 626,179.41 ha to 1,223,506.62 ha, whereas plain meadow grassland reduced from 556,784.64 ha to 118,948.23 ha. (2) The total ecosystem service value of grasslands in the basin exhibited a marginally insignificant decrease, amounting to a reduction of 5.73422 billion CNY. The values for mountain desert, mountain desert steppe, mountain typical steppe, and mountain meadow grasslands were relatively low and showed minimal change. (3) In comparison to 2022, the projected areas of grassland under the three scenarios for 2000 show a substantial reduction, particularly in plain desert and hilly desert grasslands. The ecosystem service values across all scenarios are expected to decline in tandem with varying degrees of grassland degradation. This research underscores the impact of global warming and human activities on the shrinking grassland area and the diminishing ecosystem service values in the Bosten Lake Basin. The current state of grassland resources in the study area is under threat, highlighting the urgent need for strategic planning and conservation efforts to ensure sustainable development and ecological integrity.
Journal Article
Assessment of Soil Salinization Risk by Remote Sensing-Based Ecological Index (RSEI) in the Bosten Lake Watershed, Xinjiang in Northwest China
2022
Accurate real-time information about the spatial and temporal dynamics of soil salinization is crucial for preventing the aggravation of salinization and achieving sustainable development of the ecological environment. With the Bosten Lake watershed as the study area, in this study, the regional risk factors of soil salinization were identified, the salinization information was extracted, and the remote sensing-based ecological index (RSEI) of soil salinization was assessed through the combined use of remote sensing (RS) and geographic information system (GIS) techniques and measurements of soils samples collected from various field sites. The results revealed that (1) a four period (1990, 2000, 2010, and 2020) RS dataset on soil salinization allowed for the accurate classification of the land use/land cover types, with an overall classification accuracy of greater than 90% and kappa values of >0.90, and the salt index (SI), an RS-derived risk factor of soil salinization, was significantly correlated with the actual measured salt content of the surface soils. (2) The RS-derived elevation and normalized difference vegetation index (NDVI) were significantly correlated with the SI-T. (3) An integrated risk assessment model was constructed for the soil salinization risk in the Bosten Lake watershed, which calculated the integrated risk index values and classified them into four risk levels: low risk, medium risk, high risk, and extremely high risk. (4) Due to the combined effect of the surface water area and terrain, the soil salinization risk gradually decreased from the lake to the surrounding areas, while the corresponding spatial range increased in order of decreasing risk. The areas with different levels of soil salinization risk in the study area during the last 30 years were ranked in decreasing order of medium risk > high risk > extremely high risk > low risk. These findings provide theoretical support for preventing and controlling soil salinization and promoting agricultural production in the study area.
Journal Article
Major ion chemistry, weathering process and water quality of natural waters in the Bosten Lake catchment in an extreme arid region, NW China
2015
The concentrations of major ions in the surface water and the groundwater of the Bosten Lake catchment before and during rainy seasons were analyzed to determine the major ion chemistry, geochemical process and to assess the water quality for drinking and irrigation purposes. Natural waters were hard-fresh water with an alkaline nature and a Ca²⁺–HCO₃⁻water type. Although much of physicochemical parameters were under the highest desirable limits set by the Chinese Government for drinking purpose, some samples were not suitable for drinking with reference to the concentrations of NO₃⁻and SO₄²⁻. The sodium adsorption ratio and sodium percentage (%Na) values indicated that most waters were suitable for irrigation. Seasonal variations of ion concentrations and water quality were minor. Saturation index in waters showed that most of the waters were oversaturated with respect to aragonite, calcite, dolomite and magnesite, whereas under-saturated to gypsum and halite. Carbonate weathering and evaporite dissolution were the primary and secondary sources of the dissolved ions, whereas anthropogenic input played a minor role. For the sustainable development of Bosten Lake, a reduction of discharge water from salt washing and an increase in the fresh water inflow to the lake are needed.
Journal Article
Total Streamflow Variation for the Upper Catchment of Bosten Lake Basin in China Inferred from Tree-Ring Width Records
2023
Bosten Lake Basin not only is a major source of drinking water for the residents of the surrounding area, but also maintains the ecological balance of the region. However, with the influence of climate change and human activities, the water level of Bosten Lake fluctuates sharply and has a great impact on the surrounding ecological environment. Therefore, the study of its historical water flow changes as a reference has become a focus of research. In this study, the radial growth of Schrenk spruces (Picea schrenkiana Fisch. et Mey.) significantly correlated with the tributary streamflow coming from the mountainous region near Bosten Lake Basin. On the basis of this good coherence, the tree-ring chronologies were used to reconstruct the streamflow for Huangshuigou River from the previous August to the present July (r = 0.766, p < 0.0001, n = 50). The reconstructed streamflow series matched observations well, explaining 63.3% of the variation in the observed streamflow of 1956–2005. Then, the sum of the streamflow reconstruction of Huangshuigou River and another two tree-ring-based streamflow reconstructions (Kaidu River and Qingshui River) was used to represent the hydrological variation of the upper catchment of Bosten Lake Basin, and the reconstruction sequence was 306 years. The 10.7, 5.5, and 2.1 year cycles of the power spectrum and wavelet analysis revealed that the runoff series reconstructed from tree-ring hydrometeorology was related to solar activity. Some dry and wet years in the reconstructed streamflow series of the upper catchment of Bosten Lake Basin corresponded to the historical record. During the wet years, the Indian Ocean was probably the main source of precipitation.
Journal Article
Evapotranspiration Estimation Based on Remote Sensing and the SEBAL Model in the Bosten Lake Basin of China
2020
Evapotranspiration (ET) is an important part of both water balance and energy balance. Accordingly, the estimation of ET plays a key role in research related to regional water resources and energy balance. Using the largest inland freshwater lake in China—Bosten Lake Basin—as a target area, this study employs the SEBAL model combined with actual surface ET from the 2013 MODIS ET data to estimate ET in the Bosten Lake Basin from a time and space perspective. The findings include the following: (1) Evapotranspiration in the Bosten Lake Basin shows a unimodal distribution in terms of time distribution, with the highest ET occurring in July and August. In terms of spatial distribution, the overall trend is more apparent in the northwest portion of the basin than the southeast portion, as there are more mountains in the northwest as well as fewer desert areas. (2) Grassland and unused land were the main types of land cover, and ET exhibited a clear relationship to vegetation coverage and water supply. The distribution of land use types from northwest to southeast ET show a significant downward trend. (3) During the growing season, the average daily ET level of land use/cover type was the greatest over water bodies (5.61 mm/d), followed by grassland (4.6 mm/d) and snow/ice (4.29 mm/d), with unused land giving the smallest amounts of ET.
Journal Article