Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
12,358 result(s) for "Botanical research"
Sort by:
Dormancy cycles in Aquilegia oxysepala Trautv. et Mey
Seed dormancy and the formation of a soil seed bank is important plant regeneration strategies, especially if the environment is unpredictable. The present research explores how environmental factors control seed dormancy release, and how seed dormancy is related to the soil seed bank and regeneration of the perennial Aquilegia oxysepala. The effects of incubation temperature, light, cold and warm stratification, gibberellic acid (GA.sub.3) along with the germination phenology of A. oxysepala in the field were used to determine the type of seed dormancy. Seasonal change of seed dormancy was determined by regularly exhuming buried seeds and incubating them in laboratory conditions. A. oxysepala seeds has underdeveloped (small) embryos along with physiological dormancy at dispersal. With the increased amounts of cold stratification, the germination of A. oxysepala increased gradually. GA.sub.3 served as a substitute for cold stratification. Breaking of physiological dormancy under natural temperatures in the field occurred in winter, while growth of embryos and germination of seeds occurred in early spring. Viable seeds that had not germinated in early spring were induced into secondary dormancy by high soil temperatures. A. oxysepala provides one of a few examples of dormancy cycling in seeds with morphophysiological dormancy. Freshly matured seeds of A. oxysepala seeds have non-deep simple morphophysiological dormancy. The annual dormancy-non-dormancy cycle maintains the coordination between timing of seedling emergence with favorable seasons, thus increasing the survival chances of seedlings in environments with seasonal changes.
Phytoplankton community structure at the eastern entrance of the Gulf of California during El Nino 2023
This work aims to report the phytoplankton species composition and cell density in the Mazatlan coastal region (eastern entrance of the Gulf of California (GC), Mexico) during the strong El Nino event of 2023. Surface water samples (at 2 m depth) for phytoplankton cell determinations were collected in December of 2023, a month in which the numerical value of the Oceanic Nino Index was 2.0. The results showed a total of 197 species, including 113 diatoms (with a total cell density of 51,444 cells [L.sup.-1]), 76 dinoflagellates (with a total cell density of 31,260 cells [L.sup.-1]), four silicoflagellates (with a total cell density of 420 cells [L.sup.-1]), two cyanobacteria (with a total cell density of 2,020 cells [L.sup.-1]), one Euglenophyta (with a total cell density of 900 cells [L.sup.-1]) and one ciliate (with a total cell density of 7,820 cells [L.sup.-1]). The diatom Dactyliosolen phuketensis (B.G.Sundstrom) G.R. Hasle, 1996 and the dinoflagellate Gyrodinium fusiforme (Kofoid & Swezy, 1921) presented the highest cell densities with 4,100 and 5,900 cells [L.sup.-1], respectively, species that have been previously reported in high abundances in Mexican waters in years of warming events, including El Nino. The results presented here contribute to understanding the effects of strong El Nino events on the phytoplankton community structure of the southeastern GC. This topic still needs to be fully addressed. This study also provides an update on the taxonomic lists available for the region of a group of organisms whose nomenclature has been constantly changing in recent years.
Plastic response of resource allocation strategy and functional traits of an endemic submerged macrophyte
Submerged macrophytes play a crucial role in lake ecosystems, and their survival is dependent upon their ability to cope with variable environmental stress. Therefore, studying the plastic response of submerged macrophytes' resource allocation and functional traits to the environment may provide insights helpful for ecological restoration practices. In September 2021, a field survey was conducted in the Erhai Lake, where samples of Ottelia acuminata, and functional traits and biomass allocation in relation to water depth were measured. The study found that O. acuminata exhibited large intraspecific variations to adapt to environmental stress, and the average intraspecific variation was 55.86%. In the current environment, this study suggested that the optimal growth depth for O. acuminata is moderate water depth (1-2 m). The results of allometric growth analysis showed that the resource allocation of O. acuminata responded to the water depth with the synergistic effect of leaf area and shoot height. In shallow water, the resource allocation of O. acuminata was mainly used for leaf area growth, while in deep water, the increase of shoot height was mainly used to cope with stress. This research will provide us useful information for the ecological restoration and protection of this endemic and endangered submerged macrophyte.
Biogeographic Patterns and Richness of the IMeconopsis/I Species and Their Influence Factors across the Pan-Himalaya and Adjacent Regions
Understanding the potential habitat of Meconopsis, their species richness distribution patterns, and their influencing factors are critical for the conservation and rational exploitation of this valuable resource. In this study, we applied the MaxEnt model to predict their potential distribution, mapped the distribution pattern of species richness, and analyzed the variation of species richness along environmental gradients. Finally, we calculated the landscape fragmentation indices between the five subregions. Our results found that: (1) the medium- and high-suitable habitats of Meconopsis were mainly distributed in the central and eastern Himalaya, the Hengduan Mountains, and the southeast edge of the plateau platform, with suitable habitats ranged from 3200 m to 4300 m, whose most important factor is precipitation of the warmest quarter; (2) species richness showed a hump pattern along the environmental gradients except for longitude that showed an increasing trend, mainly concentrated in the south and southeast; and (3) the subregions are in the descending order of species richness: plateau platform, Hengduan Mountains, central, eastern, and western Himalaya; the highest and lowest degree of landscape fragmentation were in the western Himalaya and eastern Himalaya, respectively. Our study provides a theoretical background for the conservation and sustainable exploitation of Meconopsis in the wild.
New Morphological, Distribution, and Ecological Data on IScabiosa garganica/I , a Poorly Known Species of the Italian Flora, with Evaluation of Its Conservation Status and Typification of the Name
This paper presents the results of a research performed on Gargano Promontory (SE-Italy) on the populations of Scabiosa garganica, a species with little herbarium records and whose few morphological descriptions are outdated. S. garganica belongs to the S. holosericea aggr., a group including very similar taxa that still have different taxonomic classifications. Its typical location is Monte Sant'Angelo in the Gargano area. Surveys have ascertained the existence of many populations, whose stational data help to understand the distribution and ecological conditions S. garganica is linked to. The morphological analysis of a large sample (75 plants from 9 sites) allows for the description of the qualitative and quantitative characteristics of this species. The new morphological framework highlights the species autonomy of S. garganica and can contribute to clarifying the relationship with S. holosericea and S. taygetea to which it is closer. In addition, for the correct delimitation of the species, the name Scabiosa garganica is lectotypified. Finally, the species was assessed against the IUCN criteria for the evaluation of its conservation status.
Plant–microbiome interactions: from community assembly to plant health
Healthy plants host diverse but taxonomically structured communities of microorganisms, the plant microbiota, that colonize every accessible plant tissue. Plant-associated microbiomes confer fitness advantages to the plant host, including growth promotion, nutrient uptake, stress tolerance and resistance to pathogens. In this Review, we explore how plant microbiome research has unravelled the complex network of genetic, biochemical, physical and metabolic interactions among the plant, the associated microbial communities and the environment. We also discuss how those interactions shape the assembly of plant-associated microbiomes and modulate their beneficial traits, such as nutrient acquisition and plant health, in addition to highlighting knowledge gaps and future directions.In this Review, Trivedi and colleagues explore the interactions between plants, their associated microbial communities and the environment, and also discuss how those interactions shape the assembly of plant-associated microbiomes and modulate their beneficial traits.
Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis
Tea is an important global beverage crop and is largely clonally propagated. Despite previous studies on the species, its genetic and evolutionary history deserves further research. Here, we present a haplotype-resolved assembly of an Oolong tea cultivar, Tieguanyin. Analysis of allele-specific expression suggests a potential mechanism in response to mutation load during long-term clonal propagation. Population genomic analysis using 190 Camellia accessions uncovered independent evolutionary histories and parallel domestication in two widely cultivated varieties, var. sinensis and var. assamica . It also revealed extensive intra- and interspecific introgressions contributing to genetic diversity in modern cultivars. Strong signatures of selection were associated with biosynthetic and metabolic pathways that contribute to flavor characteristics as well as genes likely involved in the Green Revolution in the tea industry. Our results offer genetic and molecular insights into the evolutionary history of Camellia sinensis and provide genomic resources to further facilitate gene editing to enhance desirable traits in tea crops. Haplotype-resolved genome assembly of an Oolong tea cultivar Tieguanyin and population genomic analyses of 190 Camellia accessions provide insights into the evolutionary history of the tea plant Camellia sinensis .
Developmental pattern of grapevine
The grapevine berry surface is covered by a cuticle consisting of cutin and various lipophilic wax compounds. The latter build the main barrier for transpirational water loss and protect the fruit against environmental factors e.g. pests, mechanical impacts or radiation. The integrety of the fruit surface is one important key factor for post-harvest quality and storage of fruits. Nonetheless, the developmental pattern of cuticular wax was so far only investigated for a very limited number of fruits. Therefore, we performed comparative investigations on the compositional and morphological nature of epicuticular wax crystals and underlying wax during fruit development in Vitis vinifera. The main compound oleanolic acid belongs to the pentacyclic triterpenoids, which occur very early in the development in high amounts inside the cuticle. The amount increases until veraison and decreases further during ripening. In general, very-long chain aliphatic (VLCA) compounds are present in much smaller amounts and alcohols and aldehydes follow the same trend during development. In contrast, the amount of fatty acids constantly increases from fruit set to ripening while wax esters only occur in significant amount at veraison and increase further. Wax crystals at the fruit surface are solely composed of VLCAs and the morphology changes during development according to the compositional changes of the VLCA wax compounds. The remarkable compositional differences between epicuticular wax crystals and the underlying wax are important to understand in terms of studying grape-pest interactions or the influence of environmental factors, since only wax crystals directly face the environment.
Preliminary study on unlocking growth and yield potential of USDA foxtail millet
Foxtail millet (Setaria italica L.) is nutritionally superior to other cereals of the family Poaceae, with the potential to perform better in marginal environments. In the present context of climate change, ecologically sound and low-input foxtail millet varieties can be chosen for agricultural sustainability. The planned research was carried out at the green house of the Department of Agronomy, University of Agriculture, Faisalabad, Pakistan, to investigate the impact of various levels of NPK fertilizer on the growth, development, and yield of foxtail millet lines from USDA germplasm. Eight lines of foxtail millet; U2, V19, V73, V93, V101, V106, V107, and V111, were under study along with NPK fertilizers' treatments; T.sub.1 = 000 NPK as a control, T.sub.2 = 20:15:15 NPK, T.sub.3 = 30:20:20 NPK, T.sub.4 = 40:25:25 NPK, and T.sub.5 = 50:30:30 NPK (kg ha.sup.- 1). NPK treatments were applied twice during the study periods: first dose was applied after one week of the emergence of seedlings and the second dose was applied at the age of four weeks of seedlings. The time to 50% emergence ranged from 4.33 (V111) to 5.92 (U2) days, and the emergence was highest in V111 (10.02), and V19 had the lowest emergence index of 4.95. Furthermore, all genotypes achieved a complete final emergence percentage of 100, except U2 (92.89%) and V19 (89.33%). The highest growth rate and assimilation rate were observed in V111 and V107 under the impact of treatment 5. Among the different treatments, T.sub.3 resulted in the maximum plant height, panicle length, and grain yield per panicle. The highest panicle weight and grain yield per panicle were observed in line V106. Line V107 synthesized the highest chlorophyll a while V93 produced highest chlorophyll b contents which is statistically similar toV19. Line V19 had the highest total chlorophyll and V93 produced the highest carotenoid contents. Application of NPK at the rate of 50:30:30 kg ha.sup.- 1 produced maximum chlorophyll a (23%), b (15.8%), total chlorophyll contents (14.2%), plant fresh biomass (2.06%), and grain yield (23.6%) as compared to control treatment. Overall, T.sub.3 (30:20:20) and T.sub.5 (50:30:30) were observed to be better as compared to other treatments. With respect to growth, yield, and chlorophyll contents, lines U2, V19, V93, V106, V107, and V111 were observed to be potentially superior.
Selection and validation of reference genes for qRT-PCR normalization in dayflower
Dayflower (Commelina communis), a widely invasive weed, thrives well under a variety of abiotic stresses, including drought and herbicides, and harms the growth of crops such as maize and soybean. Gene expression in dayflower is an important but understudied area due to the lack of reliable reference genes. Fifteen candidate reference genes, which are common reference genes and homologous to those used in other plants, were selected through RNA-seq datasets of dayflower. The expression stability of these screened reference genes was evaluated under three abiotic stresses (drought, herbicide and copper) and in five organs (roots, stems, leaves, flowers and seeds) using five commonly used software programs (geNorm, NormFinder, BestKeeper, [DELA]Ct and RefFinder). The results showed that API5 and SAND had the highest stability in stems, while SAND, EF1A and API5 had the highest stability in roots. Moreover, SAND, ALDH113 and API5 were most stably expressed under copper stress, and EF1A, SAND and API5 were most stable under drought stress. SAND was consistently the most stably expressed gene in both the organs and all samples. Notably, The SAND gene ranked among the top three in terms of stability in all abiotic treatments and in various organs. This result indicates that the SAND gene is suitable for qRT-PCR experimentation in diverse tissues and under multiple (drought, herbicide and copper) abiotic stress conditions in dayflower. This study identified the most stably expressed reference genes under three abiotic stresses and in five organs of dayflower, and SAND showed high expression stability under various experimental conditions, making it a reliable reference gene for gene expression analysis experiments under different conditions in dayflower. This study will enhance the precision of the qRT-PCR quantification of candidate genes related to the adaptation significance of dayflower.