Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,613
result(s) for
"Boundary layer structure"
Sort by:
Reynolds stress scaling in the near-wall region of wall-bounded flows
by
Smits, Alexander J.
,
Pirozzoli, Sergio
,
Lee, Myoungkyu
in
Boundary Layers: Boundary layer structure
,
Boundary Layers: Pipe flow boundary layer
,
ENGINEERING
2021
A new scaling is derived that yields a Reynolds-number-independent profile for all components of the Reynolds stress in the near-wall region of wall-bounded flows, including channel, pipe and boundary layer flows. The scaling demonstrates the important role played by the wall shear stress fluctuations and how the large eddies determine the Reynolds number dependence of the near-wall turbulence behaviour.
Journal Article
Wall-wake laws for the mean velocity and the turbulence
2024
A new wall-wake law is proposed for the streamwise turbulence in the outer region of a turbulent boundary layer. The formulation pairs the logarithmic part of the profile (with a slope $A_1$ and additive constant $B_1$) to an outer linear part, and it accurately describes over 95 % of the boundary layer profile at high Reynolds numbers. Once the slope $A_1$ is fixed, $B_1$ is the only free parameter determining the fit. Most importantly, $B_1$ is shown to follow the same trend with Reynolds number as the wake factor in the wall-wake law for the mean velocity, which is tied to changes in scaling of the mean flow and the turbulence that occur at low Reynolds number.
Journal Article
The Development of Boundary Layer Structure Index (BLSI) and Its Relationship with Ground Air Quality
2019
Ambient air quality monitoring data and radar tracking sonde data were used to study the atmospheric boundary layer structure (ABLS) and its changing characteristics over Wuhan. The boundary layer structure index (BLSI), which can effectively describe the ABLS, was accordingly developed and its ability to describe the near-surface air quality was analyzed. The results can be summarized as follows. (1) An analysis of the ABLS during seriously polluted cases revealed that the ABLS was usually dry and warm with a small ventilation index (VI); meanwhile, the ABLS during clean cases was usually wet and cold with a large VI. (2) The correlation between the air quality and BLSI at 100~300 m was good and passed the confidence level limit at 99%. Moreover, the correlation coefficient increased with the altitude at 10~250 m and showed a downward trend at 250~500 m. The correlation between the BLSI at 250 m and the ground air quality was the most significant (r = 0.312), indicating that the layer ranging from 0 to 250 m is essential for determining the ground air quality. (3) The BLSI considers both the vertical diffusion capability and horizontal removal capability of the atmosphere. Therefore, it is highly capable of describing the ABLS and the ground air quality.
Journal Article
Impacts of Boundary-Layer Structure and Turbulence on the Variations of PM2.5 During Fog–Haze Episodes
2022
The precise cause of PM2.5 (fine particular matter with a diameter smaller than 2.5 μm) explosive growth and the contribution of intermittent turbulence to the dispersion of PM2.5 are uncertain. Thus, the impact of boundary-layer structure and turbulence on the variations of surface PM2.5 during fog–haze episodes, especially during explosive growth and dispersion episodes, are investigated using turbulence data collected at a 255-m high meteorological tower in Tianjin from 2016 to 2018. Results suggest that the explosive growth of surface PM2.5 during fog–haze episodes is closely related to weak turbulent mixing, nocturnal inversions, or anomalous inversions, and the barrier effect of strong turbulent intermittency. Turbulent intermittency acts as a lid for hindering pollutant dispersion and is favourable for the fast accumulation of surface PM2.5. Apart from the potential causes mentioned above, the persistent moderate south-westerly flow is also a contributing factor for the explosive growth of surface PM2.5 during fog–haze episodes associated with regional transport. In addition, we demonstrate a possible mechanism of how intermittent turbulence affects the dispersion of PM2.5. Results verify that intermittent turbulence induced by the nocturnal low-level jet (LLJ) indeed plays an important role in the dispersion of PM2.5. However, the contribution of intermittent turbulence generated by the nocturnal LLJ to the dispersion of PM2.5 strongly relies on the intensity of the nocturnal LLJ.
Journal Article
Retrieval of mixing height and dust concentration with lidar ceilometer
by
Räsänen, Janne
,
Münkel, Christoph
,
Karppinen, Ari
in
Aerosol
,
Air pollution
,
Analysis methods
2007
The Vaisala ceilometers CT25K and CL31 are eye-safe single lens lidar systems reporting attenuated backscatter profiles; they often operate 24 h a day in fully automated, hands-off operation mode. These profiles can be used for more than just cloud-base height determination. In dry weather situations, there is a fairly good correlation between the ceilometer near-range backscatter and in situ PM10 concentration readings. The comparison of mixing height values based on soundings and on ceilometer backscattering profiles indicates that ceilometers are suitable instruments for determining the convective mixing height. Its enhanced optics and electronics enables the CL31 ceilometer to detect fine boundary-layer structures whose counterparts are seen in temperature profiles.
Journal Article
Evaluation of Limited-Area Models for the Representation of the Diurnal Cycle and Contrasting Nights in CASES-99
by
Steeneveld, G. J.
,
Svensson, G.
,
de Arellano, J. Vilà-Guerau
in
Air pollution
,
Atmosphere
,
Atmospheric boundary layer
2008
This study evaluates the ability of three limited-area models [the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS), and the High-Resolution Limited-Area Model (HIRLAM)] to predict the diurnal cycle of the atmospheric boundary layer (ABL) during the Cooperative Atmosphere–Surface Exchange Study (CASES-99) experimental campaign. Special attention is paid to the stable ABL. Limited-area model results for different ABL parameterizations and different radiation transfer parameterizations are compared with the in situ observations. Model forecasts were found to be sensitive to the choice of the ABL parameterization both during the day and at night. At night, forecasts are particularly sensitive to the radiation scheme. All three models underestimate the amplitude of the diurnal temperature cycle (DTR) and the near-surface wind speed. Furthermore, they overestimate the stable boundary layer height for windy conditions and underestimate the stratification of nighttime surface inversions. Favorable parameterizations for the stable boundary layer enable rapid surface cooling, and they have limited turbulent mixing. It was also found that a relatively large model domain is required to model the Great Plains low-level jet. A new scheme is implemented for the stable boundary layer in the Medium-Range Forecast Model (MRF). This scheme introduces a vegetation layer, a new formulation for the soil heat flux, and turbulent mixing based on the local scaling hypothesis. The new scheme improves the representation of surface temperature (especially for weak winds) and the stable boundary layer structure.
Journal Article
Impacts of Aerosol Shortwave Radiation Absorption on the Dynamics of an Idealized Convective Atmospheric Boundary Layer
2013
We investigated the impact of aerosol heat absorption on convective atmospheric boundary-layer (CBL) dynamics. Numerical experiments using a large-eddy simulation model enabled us to study the changes in the structure of a dry and shearless CBL in depth-equilibrium for different vertical profiles of aerosol heating rates. Our results indicated that aerosol heat absorption decreased the depth of the CBL due to a combination of factors: (i) surface shadowing, reducing the sensible heat flux at the surface and, (ii) the development of a deeper inversion layer, stabilizing the upper CBL depending on the vertical aerosol distribution. Steady-state analytical solutions for CBL depth and potential temperature jump, derived using zero-order mixed-layer theory, agreed well with the large-eddy simulations. An analysis of the entrainment zone heat budget showed that, although the entrainment flux was controlled by the reduction in surface flux, the entrainment zone became deeper and less stably stratified. Therefore, the vertical profile of the aerosol heating rate promoted changes in both the structure and evolution of the CBL. More specifically, when absorbing aerosols were present only at the top of the CBL, we found that stratification at lower levels was the mechanism responsible for a reduction in the vertical velocity and a steeper decay of the turbulent kinetic energy throughout the CBL. The increase in the depth of the inversion layer also modified the potential temperature variance. When aerosols were present we observed that the potential temperature variance became significant already around
(where
is the CBL height) but less intense at the entrainment zone due to the smoother potential temperature vertical gradient.
Journal Article
Synoptic Controls on Boundary-Layer Characteristics
by
Sinclair, Victoria A
,
Gray, Suzanne L
,
Belcher, Stephen E
in
Air masses
,
Atmospheric boundary layer
,
Atmospheric circulation
2010
We report the characteristics of the three-dimensional, time evolving, atmospheric boundary layer that develops beneath an idealised, dry, baroclinic weather system. The boundary-layer structure is forced by thermal advection associated with the weather system. Large positive heat fluxes behind the cold front drive a vigorous convective boundary layer, whereas moderate negative heat fluxes in the warm sector between the cold and warm fronts generate shallow, stably stratified or neutral boundary layers. The forcing of the boundary-layer structure is quantified by forming an Eulerian mass budget integrated over the depth of the boundary layer. The mass budget indicates that tropospheric air is entrained into the boundary layer both in the vicinity of the high-pressure centre, and behind the cold front. It is then transported horizontally within the boundary layer and converges towards the cyclone's warm sector, whence it is ventilated out into the troposphere. This cycling of air is likely to be important for the ventilation of pollution out of the boundary layer, and for the transformation of the properties of large-scale air masses.
Journal Article
Evaluation of Boundary Layer Depth Estimates at Summit Station, Greenland
2013
Boundary layer conditions in polar regions have been shown to have a significant impact on the levels of trace gases in the lower atmosphere. The ability to properly describe boundary layer characteristics (e.g., stability, depth, and variations on diurnal and seasonal scales) is essential to understanding the processes that control chemical budgets and surface fluxes in these regions. Surface turbulence data measured from 3D sonic anemometers on an 8-m tower at Summit Station, Greenland, were used for estimating boundary layer depths (BLD) in stable to weakly stable conditions. The turbulence-derived BLD estimates were evaluated for June 2010 using direct BLD measurements from an acoustic sounder located approximately 50m away from the tower. BLDs during this period varied diurnally; minimum values were less than 10 m, and maximum values were greater than 150 m. BLD estimates provided a better comparison with sodar observations during stable conditions. Ozone and nitrogen oxides were also measured at the meteorological tower and investigated for their dependency on boundary layer structure. These analyses, in contrast to observations from South Pole, Antarctica, did not show a clear relation between surface-layer atmospheric trace-gas levels and the stable boundary layer.
Journal Article
Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer
by
Vickers, Dean
,
Mahrt, Larry
,
Skyllingstad, Eric D
in
Atmosphere
,
Atmospheric boundary layer
,
Atmospheric models
2007
A numerical modelling study is presented focusing on the effects of mesoscale sea-surface temperature (SST) variability on surface fluxes and the marine atmospheric boundary-layer structure. A basic scenario is examined having two regions of SST anomaly with alternating warm/cold or cold/warm water regions. Conditions upstream from the anomaly region have SST values equal to the ambient atmosphere temperature, creating an upstream neutrally stratified boundary layer. Downstream from the anomaly region the SST is also set to the ambient atmosphere value. When the warm anomaly is upstream from the cold anomaly, the downstream boundary layer exhibits a more complex structure because of convective forcing and mixed layer deepening upstream from the cold anomaly. An internal boundary layer forms over the cold anomaly in this case, generating two distinct layers over the downstream region. When the cold anomaly is upstream from the warm anomaly, mixing over the warm anomaly quickly destroys the shallow cold layer, yielding a more uniform downstream boundary-layer vertical structure compared with the warm-to- cold case. Analysis of the momentum budget indicates that turbulent momentum flux divergence dominates the velocity field tendency, with pressure forcing accounting for only about 20% of the changes in momentum. Parameterization of surface fluxes and boundary-layer structure at these scales would be very difficult because of their dependence on subgrid-scale SST spatial order. Simulations of similar flow over smaller scale fronts (<5 km) suggest that small-scale SST variability might be parameterized in mesoscale models by relating the effective heat flux to the strength of the SST variance.
Journal Article