Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
47,951 result(s) for "Brain Diseases therapy."
Sort by:
The notebook of a new clinical neuropsychologist : stories from another world
\"Have you ever looked at a heavy volume on neuropsychology and wondered what it would actually be like to become a professional clinician, working every day with neurological patients in a busy hospital while simultaneously learning your craft? This book tells the story of that journey. a The Notebook of a New Clinical Neuropsychologist vividly details the experience of starting work in clinical neuropsychology, exploring early-career learning and development through an intimate, case-based approach. Topics include the learning of basic clinical skills and knowledge, counter-transference, the clinician's emotional experiences, ethical and moral dilemmas, and the development of clinical reasoning. The book is structured around individual studies from the author's early caseload, with each vignette containing the relevant neuropathology, clinical presentation, history, neuropsychological test finding and other clinical data. Chapters are also organized around key neuropathological conditions, including traumatic brain injury, stroke, and brain infections, which provide a broader context for the narrative focus of the book. A few academic books explore the personal, intellectual and ethical dilemmas that face a new clinician working with patients in a neuropsychological setting. Tailored to facilitate experiential learning via case studies, reflective practice and problem based-learning, the book will be of interest to students and professionals working within the broad area of neuropsychology and brain injury services.\"--Publisher description.
Repeated blood–brain barrier opening with an implantable ultrasound device for delivery of albumin-bound paclitaxel in patients with recurrent glioblastoma: a phase 1 trial
Low-intensity pulsed ultrasound with concomitant administration of intravenous microbubbles (LIPU-MB) can be used to open the blood–brain barrier. We aimed to assess the safety and pharmacokinetics of LIPU-MB to enhance the delivery of albumin-bound paclitaxel to the peritumoural brain of patients with recurrent glioblastoma. We conducted a dose-escalation phase 1 clinical trial in adults (aged ≥18 years) with recurrent glioblastoma, a tumour diameter of 70 mm or smaller, and a Karnofsky performance status of at least 70. A nine-emitter ultrasound device was implanted into a skull window after tumour resection. LIPU-MB with intravenous albumin-bound paclitaxel infusion was done every 3 weeks for up to six cycles. Six dose levels of albumin-bound paclitaxel (40 mg/m2, 80 mg/m2, 135 mg/m2, 175 mg/m2, 215 mg/m2, and 260 mg/m2) were evaluated. The primary endpoint was dose-limiting toxicity occurring during the first cycle of sonication and albumin-bound paclitaxel chemotherapy. Safety was assessed in all treated patients. Analyses were done in the per-protocol population. Blood–brain barrier opening was investigated by MRI before and after sonication. We also did pharmacokinetic analyses of LIPU-MB in a subgroup of patients from the current study and a subgroup of patients who received carboplatin as part of a similar trial (NCT03744026). This study is registered with ClinicalTrials.gov, NCT04528680, and a phase 2 trial is currently open for accrual. 17 patients (nine men and eight women) were enrolled between Oct 29, 2020, and Feb 21, 2022. As of data cutoff on Sept 6, 2022, median follow-up was 11·89 months (IQR 11·12–12·78). One patient was treated per dose level of albumin-bound paclitaxel for levels 1 to 5 (40–215 mg/m2), and 12 patients were treated at dose level 6 (260 mg/m2). A total of 68 cycles of LIPU-MB-based blood–brain barrier opening were done (median 3 cycles per patient [range 2–6]). At a dose of 260 mg/m2, encephalopathy (grade 3) occurred in one (8%) of 12 patients during the first cycle (considered a dose-limiting toxicity), and in one other patient during the second cycle (grade 2). In both cases, the toxicity resolved and treatment continued at a lower dose of albumin-bound paclitaxel, with a dose of 175 mg/m2 in the case of the grade 3 encephalopathy, and to 215 mg/m2 in the case of the grade 2 encephalopathy. Grade 2 peripheral neuropathy was observed in one patient during the third cycle of 260 mg/m2 albumin-bound paclitaxel. No progressive neurological deficits attributed to LIPU-MB were observed. LIPU-MB-based blood–brain barrier opening was most commonly associated with immediate yet transient grade 1–2 headache (12 [71%] of 17 patients). The most common grade 3–4 treatment-emergent adverse events were neutropenia (eight [47%]), leukopenia (five [29%]), and hypertension (five [29%]). No treatment-related deaths occurred during the study. Imaging analysis showed blood–brain barrier opening in the brain regions targeted by LIPU-MB, which diminished over the first 1 h after sonication. Pharmacokinetic analyses showed that LIPU-MB led to increases in the mean brain parenchymal concentrations of albumin-bound paclitaxel (from 0·037 μM [95% CI 0·022–0·063] in non-sonicated brain to 0·139 μM [0·083–0·232] in sonicated brain [3·7-times increase], p<0·0001) and carboplatin (from 0·991 μM [0·562–1·747] in non-sonicated brain to 5·878 μM [3·462–9·980] μM in sonicated brain [5·9-times increase], p=0·0001). LIPU-MB using a skull-implantable ultrasound device transiently opens the blood–brain barrier allowing for safe, repeated penetration of cytotoxic drugs into the brain. This study has prompted a subsequent phase 2 study combining LIPU-MB with albumin-bound paclitaxel plus carboplatin (NCT04528680), which is ongoing. National Institutes of Health and National Cancer Institute, Moceri Family Foundation, and the Panattoni family. [Display omitted]
Hypothermia for encephalopathy in low and middle-income countries (HELIX): study protocol for a randomised controlled trial
Background Therapeutic hypothermia reduces death and disability after moderate or severe neonatal encephalopathy in high-income countries and is used as standard therapy in these settings. However, the safety and efficacy of cooling therapy in low- and middle-income countries (LMICs), where 99% of the disease burden occurs, remains unclear. We will examine whether whole body cooling reduces death or neurodisability at 18–22 months after neonatal encephalopathy, in LMICs. Methods We will randomly allocate 408 term or near-term babies (aged ≤ 6 h) with moderate or severe neonatal encephalopathy admitted to public sector neonatal units in LMIC countries (India, Bangladesh or Sri Lanka), to either usual care alone or whole-body cooling with usual care. Babies allocated to the cooling arm will have core body temperature maintained at 33.5 °C using a servo-controlled cooling device for 72 h, followed by re-warming at 0.5 °C per hour. All babies will have detailed infection screening at the time of recruitment and 3 Telsa cerebral magnetic resonance imaging and spectroscopy at 1–2 weeks after birth. Our primary endpoint is death or moderate or severe disability at the age of 18 months. Discussion Upon completion, HELIX will be the largest cooling trial in neonatal encephalopathy and will provide a definitive answer regarding the safety and efficacy of cooling therapy for neonatal encephalopathy in LMICs. The trial will also provide important data about the influence of co-existent perinatal infection on the efficacy of hypothermic neuroprotection. Trial registration ClinicalTrials.gov, NCT02387385 . Registered on 27 February 2015.
Harnessing the Potential of Exosomes in Therapeutic Interventions for Brain Disorders
Exosomes, which are nano-sized natural vesicles secreted by cells, are crucial for intercellular communication and interactions, playing a significant role in various physiological and pathological processes. Their characteristics, such as low toxicity and immunogenicity, high biocompatibility, and remarkable drug delivery capabilities—particularly their capacity to traverse the blood–brain barrier—make exosomes highly promising vehicles for drug administration in the treatment of brain disorders. This review provides a comprehensive overview of exosome biogenesis and isolation techniques, strategies for the drug loading and functionalization of exosomes, and exosome-mediated blood–brain barrier penetration mechanisms, with a particular emphasis on recent advances in exosome-based drug delivery for brain disorders. Finally, we address the opportunities and challenges associated with utilizing exosomes as a drug delivery system for the brain, summarizing the barriers to clinical translation and proposing future research directions.
Difficulties in the Diagnostics and Treatment of Hashimoto’s Encephalopathy—A Systematic and Critical Review
Hashimoto’s encephalopathy (HE) has been a poorly understood disease. It has been described in all age group, yet, there is no specific HE marker. Additionally, the treatment data in the available studies are frequently divergent and contradictory. Therefore, the aim of our systematic and critical review is to evaluate the diagnosis and treatment of HE in view of the latest findings. The databases browsed comprised PubMed, Scopus, and Google Scholar as well as Cochrane Library, and the search strategy included controlled vocabulary and keywords. A total of 2443 manuscripts were found, published since the beginning of HE research until February 2024. In order to determine validity of the data collected from studies, bias assessment was performed using RoB 2 tool. Ultimately, six studies were included in our study. HE should be considered in the differential diagnosis in patients with psychiatric and neurological symptoms. According to our findings, negative thyroid peroxidase antibodies (anti-TPOs) may represent a valuable parameter in ruling out HE. Nonetheless, this result cannot be used to confirm HE. Furthermore, the proposed anti NH2-terminal-α-enolase (anti-NAE) is non-specific for HE. The effectiveness of glucocorticoid therapy is 60.94%, although relapse occurs in 31.67% of patients following the treatment. Our review emphasizes the significance of conducting further large-scale research and the need to take into account the potential genetic factor.
Combined application of dexamethasone and hyperbaric oxygen therapy yields better efficacy for patients with delayed encephalopathy after acute carbon monoxide poisoning
Delayed encephalopathy after acute carbon monoxide (CO) poisoning (DEACMP) commonly occurs after recovering from acute CO poisoning. This study was performed to assess the efficacy of the combined application of dexamethasone and hyperbaric oxygen (HBO) therapy in patients with DEACMP. A total of 120 patients with DEACMP were recruited and randomly assigned into the experimental group (receiving dexamethasone 5 mg/day or 10 mg/day plus HBO therapy) and control group (HBO therapy as monotherapy). Meanwhile, the conventional treatments were provided for all the patients. We used the Mini-Mental State Examination (MMSE) scale to assess the cognitive function, the National Institutes of Health Stroke Scale (NIHSS) to assess the neurological function and the remission rate (RR) to assess the clinical efficacy. Myelin basic protein (MBP) in the cerebrospinal fluid (CSF) was also measured. After 4 weeks of treatment, compared to the control group, the experimental group had a significantly higher remission rate ( =0.032), a significantly higher average MMSE score ( =0.037) and a significantly lower average NIHSS score ( =0.002). Meanwhile, there was a trend toward better improvement with dexamethasone 10 mg/day, and the level of MBP in the CSF of patients was significantly lower in the experimental group than in the control group ( <0.0001). The addition of dexamethasone did not significantly increase the incidence of adverse events. These results indicate that the combined application of dexamethasone and HBO therapy could yield better efficacy for patients with DEACMP and should be viewed as a potential new therapy.
AI and organoid platforms for brain-targeted theranostics
Developing therapies for complex brain diseases faces significant challenges due to biological complexity and the stringent blood-brain barrier. While nanomedicine holds promise, traditional R&D paradigms suffer from inefficiency. This review introduces an intelligent theranostic paradigm that integrates high-fidelity brain organoid models, high-throughput screening (HTS/HCS), and Artificial Intelligence (AI). In this closed-loop workflow, organoid platforms serve a diagnostic role, generating predictive data on nanomedicine performance. AI then provides therapeutic guidance by processing this data to drive rational drug design, synthesis, and interaction prediction. This AI-driven convergence is poised to significantly accelerate the development of precisely targeted and individualized nanomedicines, offering new hope for breakthroughs in treating brain diseases.