Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10,125
result(s) for
"Brain Injuries, Traumatic - therapy"
Sort by:
Recent advances in traumatic brain injury
2019
Traumatic brain injury (TBI) is the most common cause of death and disability in those aged under 40 years in the UK. Higher rates of morbidity and mortality are seen in low-income and middle-income countries making it a global health challenge. There has been a secular trend towards reduced incidence of severe TBI in the first world, driven by public health interventions such as seatbelt legislation, helmet use, and workplace health and safety regulations. This has paralleled improved outcomes following TBI delivered in a large part by the widespread establishment of specialised neurointensive care. This update will focus on three key areas of advances in TBI management and research in moderate and severe TBI: refining neurointensive care protocolized therapies, the recent evidence base for decompressive craniectomy and novel pharmacological therapies. In each section, we review the developing evidence base as well as exploring future trajectories of TBI research.
Journal Article
Intracranial pressure monitoring with and without brain tissue oxygen pressure monitoring for severe traumatic brain injury in France (OXY-TC): an open-label, randomised controlled superiority trial
by
Bersinger, Samuel
,
Mallaret, Michel
,
PARRY, Elodie
in
Anesthesia
,
Blood pressure
,
Body temperature
2023
Optimisation of brain oxygenation might improve neurological outcome after traumatic brain injury. The OXY-TC trial explored the superiority of a strategy combining intracranial pressure and brain tissue oxygen pressure (PbtO2) monitoring over a strategy of intracranial pressure monitoring only to reduce the proportion of patients with poor neurological outcome at 6 months.
We did an open-label, randomised controlled superiority trial at 25 French tertiary referral centres. Within 16 h of brain injury, patients with severe traumatic brain injury (aged 18–75 years) were randomly assigned via a website to be managed during the first 5 days of admission to the intensive care unit either by intracranial pressure monitoring only or by both intracranial pressure and PbtO2 monitoring. Randomisation was stratified by age and centre. The study was open label due to the visibility of the intervention, but the statisticians and outcome assessors were masked to group allocation. The therapeutic objectives were to maintain intracranial pressure of 20 mm Hg or lower, and to keep PbtO2 (for those in the dual-monitoring group) above 20 mm Hg, at all times. The primary outcome was the proportion of patients with an extended Glasgow Outcome Scale (GOSE) score of 1–4 (death to upper severe disability) at 6 months after injury. The primary analysis was reported in the modified intention-to-treat population, which comprised all randomly assigned patients except those who withdrew consent or had protocol violations. This trial is registered with ClinicalTrials.gov, NCT02754063, and is completed.
Between June 15, 2016, and April 17, 2021, 318 patients were randomly assigned to receive either intracranial pressure monitoring only (n=160) or both intracranial pressure and PbtO2 monitoring (n=158). 27 individuals with protocol violations were not included in the modified intention-to-treat analysis. Thus, the primary outcome was analysed for 144 patients in the intracranial pressure only group and 147 patients in the intracranial pressure and PbtO2 group. Compared with intracranial pressure monitoring only, intracranial pressure and PbtO2 monitoring did not reduce the proportion of patients with GOSE score 1–4 (51% [95% CI 43–60] in the intracranial pressure monitoring only group vs 52% [43–60] in the intracranial pressure and PbtO2 monitoring group; odds ratio 1·0 [95% CI 0·6–1·7]; p=0·95). Two (1%) of 144 participants in the intracranial pressure only group and 12 (8%) of 147 participants in the intracranial pressure and PbtO2 group had catheter dysfunction (p=0.011). Six patients (4%) in the intracranial pressure and PbtO2 group had an intracrebral haematoma related to the catheter, compared with none in the intracranial pressure only group (p=0.030). No significant difference in deaths was found between the two groups at 12 months after injury. At 12 months, 33 deaths had occurred in the intracranial pressure group: 25 (76%) were attributable to the brain trauma, six (18%) were end-of-life decisions, and two (6%) due to sepsis. 34 deaths had occured in the intracranial pressure and PbtO2 group at 12 months: 25 (74%) were attributable to the brain trauma, six (18%) were end-of-life decisions, one (3%) due to pulmonary embolism, one (3%) due to haemorrhagic shock, and one (3%) due to cardiac arrest.
After severe non-penetrating traumatic brain injury, intracranial pressure and PbtO2 monitoring did not reduce the proportion of patients with poor neurological outcome at 6 months. Technical failures related to intracerebral catheter and intracerebral haematoma were more frequent in the intracranial pressure and PbtO2 group. Further research is needed to assess whether a targeted approach to multimodal brain monitoring could be useful in subgroups of patients with severe traumatic brain injury–eg, those with high intracranial pressure on admission.
The French National Program for Clinical Research, La Fondation des Gueules Cassées, and Integra Lifesciences.
Journal Article
Mechanisms of Blood–Brain Barrier Dysfunction in Traumatic Brain Injury
2020
Traumatic brain injuries (TBIs) account for the majority of injury-related deaths in the United States with roughly two million TBIs occurring annually. Due to the spectrum of severity and heterogeneity in TBIs, investigation into the secondary injury is necessary in order to formulate an effective treatment. A mechanical consequence of trauma involves dysregulation of the blood–brain barrier (BBB) which contributes to secondary injury and exposure of peripheral components to the brain parenchyma. Recent studies have shed light on the mechanisms of BBB breakdown in TBI including novel intracellular signaling and cell–cell interactions within the BBB niche. The current review provides an overview of the BBB, novel detection methods for disruption, and the cellular and molecular mechanisms implicated in regulating its stability following TBI.
Journal Article
Coagulopathy and Progression of Intracranial Hemorrhage in Traumatic Brain Injury: Mechanisms, Impact, and Therapeutic Considerations
by
Maegele, Marc
in
Blood Coagulation Disorders - etiology
,
Blood Coagulation Disorders - therapy
,
Brain Injuries
2021
Abstract
BACKGROUND
Traumatic brain injury (TBI) remains one of the most challenging health and socioeconomic problems of our times. Clinical courses may be complicated by hemostatic abnormalities either pre-existing or developing with TBI.
OBJECTIVE
To review frequencies, patterns, mechanisms, novel approaches to diagnostics, treatment, and outcomes of hemorrhagic progression and coagulopathy after TBI.
METHODS
Selective review of the literature in the databases Medline (PubMed) and Cochrane Reviews using different combinations of the relevant search terms was conducted.
RESULTS
Of the patients, 20% with isolated TBI display laboratory coagulopathy upon hospital admission with profound effect on morbidity and mortality. Preinjury use of antithrombotic agents may be associated with higher rates of hemorrhagic progression and delayed traumatic intracranial hemorrhage. Further testing may display various changes affecting platelet function/numbers, pro- and/or anticoagulant factors, and fibrinolysis as well as interactions between brain tissues, vascular endothelium, mechanisms of inflammation, and blood flow dynamics. The nature of hemostatic disruptions after TBI remains elusive but current evidence suggests the presence of both a hyper- and hypocoagulable state with possible overlap and lack of distinction between phases and states. More “global” hemostatic assays, eg, viscoelastic and thrombin generation tests, may provide more detailed and timely information on the overall hemostatic potential thereby allowing early “goal-directed” therapies.
CONCLUSION
Whether timely and targeted management of hemostatic abnormalities after TBI can protect against secondary brain injury and thereby improve outcomes remains elusive. Innovative technologies for diagnostics and monitoring offer windows of opportunities for precision medicine approaches to managing TBI.
Journal Article
TILTomorrow today: dynamic factors predicting changes in intracranial pressure treatment intensity after traumatic brain injury
by
Maas, Andrew I. R.
,
Beqiri, Erta
,
Nelson, David W.
in
631/114/1305
,
631/114/2164
,
639/705/1042
2025
Practices for controlling intracranial pressure (ICP) in traumatic brain injury (TBI) patients admitted to the intensive care unit (ICU) vary considerably between centres. To help understand the rational basis for such variance in care, this study aims to identify the patient-level predictors of changes in ICP management. We extracted all heterogeneous data (2008 pre-ICU and ICU variables) collected from a prospective cohort (
n
= 844, 51 ICUs) of ICP-monitored TBI patients in the Collaborative European NeuroTrauma Effectiveness Research in TBI study. We developed the TILTomorrow modelling strategy, which leverages recurrent neural networks to map a token-embedded time series representation of all variables (including missing values) to an ordinal, dynamic prediction of the following day’s five-category therapy intensity level (TIL
(Basic)
) score. With 20 repeats of fivefold cross-validation, we trained TILTomorrow on different variable sets and applied the TimeSHAP (temporal extension of SHapley Additive exPlanations) algorithm to estimate variable contributions towards predictions of next-day changes in TIL
(Basic)
. Based on Somers’
D
xy
, the full range of variables explained 68% (95% CI 65–72%) of the ordinal variation in next-day changes in TIL
(Basic)
on day one and up to 51% (95% CI 45–56%) thereafter, when changes in TIL
(Basic)
became less frequent. Up to 81% (95% CI 78–85%) of this explanation could be derived from non-treatment variables (i.e., markers of pathophysiology and injury severity), but the prior trajectory of ICU management significantly improved prediction of future de-escalations in ICP-targeted treatment. Whilst there was no significant difference in the predictive discriminability (i.e., area under receiver operating characteristic curve) between next-day escalations (0.80 [95% CI 0.77–0.84]) and de-escalations (0.79 [95% CI 0.76–0.82]) in TIL
(Basic)
after day two, we found specific predictor effects to be more robust with de-escalations. The most important predictors of day-to-day changes in ICP management included preceding treatments, age, space-occupying lesions, ICP, metabolic derangements, and neurological function. Serial protein biomarkers were also important and may serve a useful role in the clinical armamentarium for assessing therapeutic needs. Approximately half of the ordinal variation in day-to-day changes in TIL
(Basic)
after day two remained unexplained, underscoring the significant contribution of unmeasured factors or clinicians’ personal preferences in ICP treatment. At the same time, specific dynamic markers of pathophysiology associated strongly with changes in treatment intensity and, upon mechanistic investigation, may improve the timing and personalised targeting of future care.
Journal Article
Early systemic insults following traumatic brain injury: association with biomarker profiles, therapy for intracranial hypertension, and neurological outcomes—an analysis of CENTER-TBI data
by
Tibboel, Dick
,
Graziano, Francesca
,
Esser, Patrick
in
Biomarkers
,
Brain
,
Calcium-binding protein
2024
PurposeWe analysed the impact of early systemic insults (hypoxemia and hypotension, SIs) on brain injury biomarker profiles, acute care requirements during intensive care unit (ICU) stay, and 6-month outcomes in patients with traumatic brain injury (TBI).MethodsFrom patients recruited to the Collaborative European neurotrauma effectiveness research in TBI (CENTER-TBI) study, we documented the prevalence and risk factors for SIs and analysed their effect on the levels of brain injury biomarkers [S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE), neurofilament light (NfL), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and protein Tau], critical care needs, and 6-month outcomes [Glasgow Outcome Scale Extended (GOSE)].ResultsAmong 1695 TBI patients, 24.5% had SIs: 16.1% had hypoxemia, 15.2% had hypotension, and 6.8% had both. Biomarkers differed by SI category, with higher S100B, Tau, UCH-L1, NSE and NfL values in patients with hypotension or both SIs. The ratio of neural to glial injury (quantified as UCH-L1/GFAP and Tau/GFAP ratios) was higher in patients with hypotension than in those with no SIs or hypoxia alone. At 6 months, 380 patients died (22%), and 759 (45%) had GOSE ≤ 4. Patients who experienced at least one SI had higher mortality than those who did not (31.8% vs. 19%, p < 0.001).ConclusionThough less frequent than previously described, SIs in TBI patients are associated with higher release of neuronal than glial injury biomarkers and with increased requirements for ICU therapies aimed at reducing intracranial hypertension. Hypotension or combined SIs are significantly associated with adverse 6-month outcomes. Current criteria for hypotension may lead to higher biomarker levels and more negative outcomes than those for hypoxemia suggesting a need to revisit pressure targets in the prehospital settings.
Journal Article
Feasibility and acceptability for LION, a fully remote, randomized clinical trial within the VA for light therapy to improve sleep in Veterans with and without TBI: An MTBI2 sponsored protocol
by
Twamley, Elizabeth W.
,
Powers, Katherine
,
Morasco, Benjamin J.
in
Acceptability
,
Adult
,
Biology and Life Sciences
2025
Sleep-wake disturbances frequently present in Veterans with mild traumatic brain injury (mTBI). These TBI-related sleep impairments confer significant burden and commonly exacerbate other functional impairments. Therapies to improve sleep following mTBI are limited and studies in Veterans are even more scarce. In our previous pilot work, morning bright light therapy (MBLT) was found to be a feasible behavioral sleep intervention in Veterans with a history of mTBI; however, this was single-arm, open-label, and non-randomized, and therefore was not intended to establish efficacy. The present study, LION (light vs ion therapy) extends this preliminary work as a fully powered, sham-controlled, participant-masked randomized controlled trial (NCT03968874), implemented as fully remote within the VA (target n = 120 complete). Randomization at 2:1 allocation ratio to: 1) active: MBLT (n = 80), and 2) sham: deactivated negative ion generator (n = 40); each with identical engagement parameters (60-min duration; within 2-hrs of waking; daily over 28-day duration). Participant masking via deception balanced expectancy assumptions across arms. Outcome measures were assessed following a 14-day baseline (pre-intervention), following 28-days of device engagement (post-intervention), and 28-days after the post-intervention assessment (follow-up). Primary outcomes were sleep measures, including continuous wrist-based actigraphy, self-report, and daily sleep dairy entries. Secondary/exploratory outcomes included cognition, mood, quality of life, circadian rhythm via dim light melatonin onset, and biofluid-based biomarkers. Participant drop out occurred in <10% of those enrolled, incomplete/missing data was present in <15% of key outcome variables, and overall fidelity adherence to the intervention was >85%, collectively establishing feasibility and acceptability for MBLT in Veterans with mTBI.
Journal Article
Management of arterial partial pressure of carbon dioxide in the first week after traumatic brain injury: results from the CENTER-TBI study
2021
PurposeTo describe the management of arterial partial pressure of carbon dioxide (PaCO2) in severe traumatic brain-injured (TBI) patients, and the optimal target of PaCO2 in patients with high intracranial pressure (ICP).MethodsSecondary analysis of CENTER-TBI, a multicentre, prospective, observational, cohort study. The primary aim was to describe current practice in PaCO2 management during the first week of intensive care unit (ICU) after TBI, focusing on the lowest PaCO2 values. We also assessed PaCO2 management in patients with and without ICP monitoring (ICPm), and with and without intracranial hypertension. We evaluated the effect of profound hyperventilation (defined as PaCO2 < 30 mmHg) on long-term outcome.ResultsWe included 1100 patients, with a total of 11,791 measurements of PaCO2 (5931 lowest and 5860 highest daily values). The mean (± SD) PaCO2 was 38.9 (± 5.2) mmHg, and the mean minimum PaCO2 was 35.2 (± 5.3) mmHg. Mean daily minimum PaCO2 values were significantly lower in the ICPm group (34.5 vs 36.7 mmHg, p < 0.001). Daily PaCO2 nadir was lower in patients with intracranial hypertension (33.8 vs 35.7 mmHg, p < 0.001). Considerable heterogeneity was observed between centers. Management in a centre using profound hyperventilation (HV) more frequently was not associated with increased 6 months mortality (OR = 1.06, 95% CI = 0.77–1.45, p value = 0.7166), or unfavourable neurological outcome (OR 1.12, 95% CI = 0.90–1.38, p value = 0.3138).ConclusionsVentilation is manipulated differently among centers and in response to intracranial dynamics. PaCO2 tends to be lower in patients with ICP monitoring, especially if ICP is increased. Being in a centre which more frequently uses profound hyperventilation does not affect patient outcomes.
Journal Article
Transcranial photobiomodulation promotes traumatic brain injury recovery via modulating glial cell polarization and neuroinflammation: a study of 1064 nm light-emitting diodes
by
Qiu, Yuanrong
,
Li, Xiaotong
,
Jiang, Xiaoxia
in
Animals
,
Anxiety - complications
,
Behavior, Animal
2025
Background
Photobiomodulation (PBM) utilizing 1064 nm near-infrared light, renowned for its deep tissue penetration capabilities, has demonstrated significant therapeutic potential in addressing brain disorders; however, its specific effects and underlying mechanisms in traumatic brain injury (TBI) remain poorly understood.
Methods
This study investigated the therapeutic efficacy of 1064 nm light-emitting diodes (LED) treatment on emotional and cognitive impairments in a murine TBI model, and elucidating potential molecular mechanisms. C57BL/6 mice were systematically allocated into Sham, TBI, and TBI + PBM intervention groups, with the latter receiving daily 1064 nm light treatment (25 mW/cm
2
, 12 min/day) for 14 consecutive days post-TBI induction. Comprehensive behavioral assessments were conducted to evaluate emotional and cognitive functions. Advanced molecular analyses encompassing transcriptome sequencing, immunofluorescence, quantitative RT-PCR, and Western blot were employed to examine brain tissue damage, neurogenesis, synaptic remodeling, and inflammatory responses.
Results
The 1064 nm LED treatment demonstrated remarkable therapeutic effects, significantly ameliorating anxiety, depression-like behaviors, and spatial cognitive deficits in TBI mice. Behavioral improvements were evidenced by enhanced rotarod performance, increased exploratory behavior in open field and elevated plus maze tests, and improved Y-maze alternation rates. At the molecular level, PBM intervention exhibited multifaceted neuroprotective effects, including inhibition of neuronal apoptosis, reduction of brain injury, promotion of neurogenesis and synaptic remodeling, and upregulation of neurotrophic factors. Furthermore, the treatment enhanced blood–brain barrier integrity through upregulation of tight junction proteins and modulated neuroinflammation by shifting microglia and astrocytes toward anti-inflammatory phenotypes.
Conclusions
These findings collectively demonstrate that 1064 nm wavelength PBM treatment effectively promotes functional recovery and mitigates both emotional and cognitive impairments in TBI mice, providing novel mechanistic insights and a promising wavelength option for PBM-based therapeutic strategies in TBI management.
Journal Article
Comparison of strategies for monitoring and treating patients at the early phase of severe traumatic brain injury: the multicentre randomised controlled OXY-TC trial study protocol
by
Gergele, Laurent
,
Bouzat, Pierre
,
Bosson, Jean Luc
in
adult intensive & critical care
,
Anesthesia
,
Body temperature
2020
IntroductionIntracranial hypertension is considered as an independent risk factor of mortality and neurological disabilities after severe traumatic brain injury (TBI). However, clinical studies have demonstrated that episodes of brain ischaemia/hypoxia are common despite normalisation of intracranial pressure (ICP). This study assesses the impact on neurological outcome of guiding therapeutic strategies based on the monitoring of both brain tissue oxygenation pressure (PbtO2) and ICP during the first 5 days following severe TBI.Methods and analysisMulticentre, open-labelled, randomised controlled superiority trial with two parallel groups in 300 patients with severe TBI. Intracerebral monitoring must be in place within the first 16 hours post-trauma. Patients are randomly assigned to the ICP group or to the ICP + PbtO2 group. The ICP group is managed according to the international guidelines to maintain ICP≤20 mm Hg. The ICP + PbtO2 group is managed to maintain PbtO2 ≥20 mm Hg in addition to the conventional optimisation of ICP. The primary outcome measure is the neurological status at 6 months as assessed using the extended Glasgow Outcome Scale. Secondary outcome measures include quality-of-life assessment, mortality rate, therapeutic intensity and incidence of critical events during the first 5 days. Analysis will be performed according to the intention-to-treat principle and full statistical analysis plan developed prior to database freeze.Ethics and disseminationThis study has been approved by the Institutional Review Board of Sud-Est V (14-CHUG-48) and from the National Agency for Medicines and Health Products Safety (Agence Nationale de Sécurité du Médicament et des produits de santé) (141 435B-31). Results will be presented at scientific meetings and published in peer-reviewed publications.The study was registered with ClinTrials NCT02754063 on 28 April 2016 (pre-results).
Journal Article