Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,810
result(s) for
"Brain Injuries - genetics"
Sort by:
Developmental deletion of amyloid precursor protein precludes transcriptional and proteomic responses to brain injury
by
Novotný, Sebastian J.
,
Dragišić, Neda
,
Head, Brian P.
in
Amyloid beta-Protein Precursor - genetics
,
amyloid precursor protein
,
Animals
2025
INTRODUCTION Amyloid precursor protein (APP) undergoes striking changes following traumatic brain injury (TBI). Considering its role in the control of gene expression, we investigated whether APP regulates transcription and translation following TBI. METHODS We assessed brain morphology (n = 4–9 mice/group), transcriptome (n = 3 mice/group), proteome (n = 3 mice/group), and behavior (n = 17–27 mice/group) of wild‐type (WT) and APP knock‐out (KO) mice either untreated or 10‐weeks following TBI. RESULTS After TBI, WT mice displayed transcriptional programs consistent with late stages of brain repair, hub genes were predicted to impact translation and brain proteome showed subtle changes. APP KO mice largely replicated this transcriptional repertoire, but showed no transcriptional nor translational response to TBI. DISCUSSION The similarities between WT mice following TBI and APP KO mice suggest that developmental APP deficiency induces a condition reminiscent of late stages of brain repair, hampering the control of gene expression in response to injury. Highlights 10‐weeks after TBI, brains exhibit transcriptional profiles consistent with late stage of brain repair. Developmental APP deficiency maintains brains perpetually in an immature state akin to late stages of brain repair. APP responds to TBI by changes in gene expression at a transcriptional and translational level. APP deficiency precludes molecular brain changes in response to TBI.
Journal Article
Genetic Risk Factors for Poor Cognitive Outcome Following Brain Insult—A Systematic Review
by
Dénes, Anna
,
Leiss, Sophia
,
Skoglund, Thomas
in
Apolipoproteins E
,
Apolipoproteins E - genetics
,
Brain cancer
2026
Cognitive outcomes following brain insult are shaped by a range of factors, including genetic predispositions. Emerging evidence indicates that specific genetic variants may affect the susceptibility to cognitive impairment in individual patients. In this systematic review we summarize the evidence for genetic variants on cognitive outcomes following brain insults.
A systematic search was conducted in PubMed, Embase, PsycINFO, bioRxiv, medRxiv, reference lists, and ClinicalTrials.gov to identify studies published before June 14, 2023, reporting associations between genetic variants and cognitive outcomes following brain insults. Only studies conducted in humans and published in English were included. A broad definition of brain insults was applied, with a primary focus on stroke, traumatic brain injury (TBI), and brain tumors. All articles underwent bias assessment using the JBI critical appraisal tools.
Of the 121 studies included, 80 (66%) were rated as low risk of bias. The APOE gene was investigated in 56% of TBI studies, 52% of stroke studies, and 43% of studies on other brain injuries. Of the 74 studies on APOE, 50 (68%) focused on the ε4 allele, with 39 studies (87%) reporting associations between the ε4 allele and worse cognitive outcomes. The BDNF rs6265 polymorphism was examined in 18 studies, 15 of which reported significant effects on cognitive outcomes. However, the direction of these effects was inconsistent, with seven studies linking the G allele and seven the A allele to worse cognitive outcomes. For the COMT rs4680 polymorphism, nine out of 12 studies reported worsened cognitive outcomes linked to the G allele, while several reported a protective association for the A allele. Injury- and population-specific patterns were not consistent.
This systematic review suggests that APOE-ε4 and potentially the G allele of COMT rs4680 are associated with poor cognitive outcomes following brain insults. The type of brain injury does not appear to influence whether genetic variants predispose to favorable or unfavorable cognitive outcomes. Future research may benefit from focusing on these markers, particularly in larger datasets, to validate these findings.
Journal Article
Cdk5 mediates rotational force-induced brain injury
by
Kumar, Nilesh
,
Natarajan, Amarnath
,
Priya Sudarsana Devi, Suma
in
60 APPLIED LIFE SCIENCES
,
631/378
,
631/378/1689
2023
Millions of traumatic brain injuries (TBIs) occur annually. TBIs commonly result from falls, traffic accidents, and sports-related injuries, all of which involve rotational acceleration/deceleration of the brain. During these injuries, the brain endures a multitude of primary insults including compression of brain tissue, damaged vasculature, and diffuse axonal injury. All of these deleterious effects can contribute to secondary brain ischemia, cellular death, and neuroinflammation that progress for weeks, months, and lifetime after injury. While the linear effects of head trauma have been extensively modeled, less is known about how rotational injuries mediate neuronal damage following injury. Here, we developed a new model of repetitive rotational head trauma in rodents and demonstrated acute and prolonged pathological, behavioral, and electrophysiological effects of rotational TBI (rTBI). We identify aberrant Cyclin-dependent kinase 5 (Cdk5) activity as a principal mediator of rTBI. We utilized Cdk5-enriched phosphoproteomics to uncover potential downstream mediators of rTBI and show pharmacological inhibition of Cdk5 reduces the cognitive and pathological consequences of injury. These studies contribute meaningfully to our understanding of the mechanisms of rTBI and how they may be effectively treated.
Journal Article
miR-9-5p is Downregulated in Serum Extracellular Vesicles of Patients Treated with Biperiden After Traumatic Brain Injury
by
Meneghetti, Paula
,
Belangero, Sintia Iole
,
da Graça Naffah-Mazzacoratti, Maria
in
Animal models
,
Anticholinergics
,
Axonogenesis
2024
Traumatic brain injury (TBI) is a prevalent and debilitating condition, which often leads to the development of post-traumatic epilepsy (PTE), a condition that yet lacks preventive strategies. Biperiden, an anticholinergic drug, is a promising candidate that has shown efficacy in murine models of PTE. MicroRNAs (miRNAs), small regulatory RNAs, can help in understanding the biological basis of PTE and act as TBI- and PTE-relevant biomarkers that can be detected peripherally, as they are present in extracellular vesicles (EVs) that cross the blood–brain barrier. This study aimed to investigate miRNAs in serum EVs from patients with TBI, and their association with biperiden treatment and PTE. Blood samples of 37 TBI patients were collected 10 days after trauma and treatment initiation in a double-blind clinical trial. A total of 18 patients received biperiden, with three subjects developing PTE, and 19 received placebo, with two developing PTE. Serum EVs were characterized by size distribution and protein profiling, followed by high-throughput sequencing of the EV miRNome. Differential expression analysis revealed no significant differences in miRNA expression between TBI patients with and without PTE. Interestingly, miR-9-5p displayed decreased expression in biperiden-treated patients compared to the placebo group. This miRNA regulates genes enriched in stress response pathways, including axonogenesis and neuronal death, relevant to both PTE and TBI. These findings indicate that biperiden may alter miR-9-5p expression in serum EVs, which may play a role in TBI resolution.
Journal Article
RIPK1 or RIPK3 deletion prevents progressive neuronal cell death and improves memory function after traumatic brain injury
2021
Traumatic brain injury (TBI) causes acute and subacute tissue damage, but is also associated with chronic inflammation and progressive loss of brain tissue months and years after the initial event. The trigger and the subsequent molecular mechanisms causing chronic brain injury after TBI are not well understood. The aim of the current study was therefore to investigate the hypothesis that necroptosis, a form a programmed cell death mediated by the interaction of Receptor Interacting Protein Kinases (RIPK) 1 and 3, is involved in this process. Neuron-specific RIPK1- or RIPK3-deficient mice and their wild-type littermates were subjected to experimental TBI by controlled cortical impact. Posttraumatic brain damage and functional outcome were assessed longitudinally by repetitive magnetic resonance imaging (MRI) and behavioral tests (beam walk, Barnes maze, and tail suspension), respectively, for up to three months after injury. Thereafter, brains were investigated by immunohistochemistry for the necroptotic marker phosphorylated mixed lineage kinase like protein(pMLKL) and activation of astrocytes and microglia. WT mice showed progressive chronic brain damage in cortex and hippocampus and increased levels of pMLKL after TBI. Chronic brain damage occurred almost exclusively in areas with iron deposits and was significantly reduced in RIPK1- or RIPK3-deficient mice by up to 80%. Neuroprotection was accompanied by a reduction of astrocyte and microglia activation and improved memory function. The data of the current study suggest that progressive chronic brain damage and cognitive decline after TBI depend on the expression of RIPK1/3 in neurons. Hence, inhibition of necroptosis signaling may represent a novel therapeutic target for the prevention of chronic post-traumatic brain damage.
Journal Article
Chronic complement dysregulation drives neuroinflammation after traumatic brain injury: a transcriptomic study
by
Tomlinson, Stephen
,
Toutonji, Amer
,
Mandava, Mamatha
in
Animals
,
Biomedical and Life Sciences
,
Biomedicine
2021
Activation of the complement system propagates neuroinflammation and brain damage early and chronically after traumatic brain injury (TBI). The complement system is complex and comprises more than 50 components, many of which remain to be characterized in the normal and injured brain. Moreover, complement therapeutic studies have focused on a limited number of histopathological outcomes, which while informative, do not assess the effect of complement inhibition on neuroprotection and inflammation in a comprehensive manner. Using high throughput gene expression technology (NanoString), we simultaneously analyzed complement gene expression profiles with other neuroinflammatory pathway genes at different time points after TBI. We additionally assessed the effects of complement inhibition on neuropathological processes. Analyses of neuroinflammatory genes were performed at days 3, 7, and 28 post injury in male C57BL/6 mice following a controlled cortical impact injury. We also characterized the expression of 59 complement genes at similar time points, and also at 1- and 2-years post injury. Overall, TBI upregulated the expression of markers of astrogliosis, immune cell activation, and cellular stress, and downregulated the expression of neuronal and synaptic markers from day 3 through 28 post injury. Moreover, TBI upregulated gene expression across most complement activation and effector pathways, with an early emphasis on classical pathway genes and with continued upregulation of
C2
,
C3
and
C4
expression 2 years post injury. Treatment using the targeted complement inhibitor, CR2-Crry, significantly ameliorated TBI-induced transcriptomic changes at all time points. Nevertheless, some immune and synaptic genes remained dysregulated with CR2-Crry treatment, suggesting adjuvant anti-inflammatory and neurotropic therapy may confer additional neuroprotection. In addition to characterizing complement gene expression in the normal and aging brain, our results demonstrate broad and chronic dysregulation of the complement system after TBI, and strengthen the view that the complement system is an attractive target for TBI therapy.
Journal Article
Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release
by
Lezon, Timothy R.
,
Heath, Brianna E.
,
Wehbi, Vanessa L.
in
Animals
,
Autocrine signalling
,
Biochemistry, Molecular Biology
2017
G protein-coupled receptors (GPCRs) are classically characterized as cell-surface receptors transmitting extracellular signals into cells. Here we show that central components of a GPCR signaling system comprised of the melatonin type 1 receptor (MT₁), its associated G protein, and β-arrestins are on and within neuronal mitochondria. We discovered that the ligand melatonin is exclusively synthesized in the mitochondrial matrix and released by the organelle activating the mitochondrial MT₁ signal-transduction pathway inhibiting stress-mediated cytochrome c release and caspase activation. These findings coupled with our observation that mitochondrial MT₁ overexpression reduces ischemic brain injury in mice delineate a mitochondrial GPCR mechanism contributing to the neuroprotective action of melatonin. We propose a new term, “automitocrine,” analogous to “autocrine” when a similar phenomenon occurs at the cellular level, to describe this unexpected intracellular organelle ligand–receptor pathway that opens a new research avenue investigating mitochondrial GPCR biology.
Journal Article
Fibrinogen as a key regulator of inflammation in disease
by
Akassoglou, Katerina
,
Davalos, Dimitrios
in
Alzheimer Disease - genetics
,
Alzheimer Disease - immunology
,
Alzheimer Disease - metabolism
2012
The interaction of coagulation factors with the perivascular environment affects the development of disease in ways that extend beyond their traditional roles in the acute hemostatic cascade. Key molecular players of the coagulation cascade like tissue factor, thrombin, and fibrinogen are epidemiologically and mechanistically linked with diseases with an inflammatory component. Moreover, the identification of novel molecular mechanisms linking coagulation and inflammation has highlighted factors of the coagulation cascade as new targets for therapeutic intervention in a wide range of inflammatory human diseases. In particular, a proinflammatory role for fibrinogen has been reported in vascular wall disease, stroke, spinal cord injury, brain trauma, multiple sclerosis, Alzheimer’s disease, rheumatoid arthritis, bacterial infection, colitis, lung and kidney fibrosis, Duchenne muscular dystrophy, and several types of cancer. Genetic and pharmacologic studies have unraveled pivotal roles for fibrinogen in determining the extent of local or systemic inflammation. As cellular and molecular mechanisms for fibrinogen functions in tissues are identified, the role of fibrinogen is evolving from a marker of vascular rapture to a multi-faceted signaling molecule with a wide spectrum of functions that can tip the balance between hemostasis and thrombosis, coagulation and fibrosis, protection from infection and extensive inflammation, and eventually life and death. This review will discuss some of the main molecular links between coagulation and inflammation and will focus on the role of fibrinogen in inflammatory disease highlighting its unique structural properties, cellular targets, and signal transduction pathways that make it a potent proinflammatory mediator and a potential therapeutic target.
Journal Article
Microglial PGC-1α protects against ischemic brain injury by suppressing neuroinflammation
2021
Background
Neuroinflammation and immune responses occurring minutes to hours after stroke are associated with brain injury after acute ischemic stroke (AIS). PPARγ coactivator-1α (PGC-1α), as a master coregulator of gene expression in mitochondrial biogenesis, was found to be transiently upregulated in microglia after AIS. However, the role of microglial PGC-1α in poststroke immune modulation remains unknown.
Methods
PGC-1α expression in microglia from human and mouse brain samples following ischemic stroke was first determined. Subsequently, we employed transgenic mice with microglia-specific overexpression of PGC-1α for middle cerebral artery occlusion (MCAO). The morphology and gene expression profile of microglia with PGC-1α overexpression were evaluated. Downstream inflammatory cytokine production and NLRP3 activation were also determined. ChIP-Seq analysis was performed to detect PGC-1α-binding sites in microglia. Autophagic and mitophagic activity was further monitored by immunofluorescence staining. Unc-51-like autophagy activating kinase 1 (ULK1) expression was evaluated under the PGC-1α interaction with ERRα. Finally, pharmacological inhibition and genomic knockdown of ULK1 were performed to estimate the role of ULK1 in mediating mitophagic activity after ischemic stroke.
Results
PGC-1α expression was shortly increased after ischemic stroke, not only in human brain samples but also in mouse brain samples. Microglia-specific PGC-1α overexpressing mice exhibited significantly decreased neurologic deficits after ischemic injury, with reduced NLRP3 activation and proinflammatory cytokine production. ChIP-Seq analysis and KEGG pathway analysis revealed that mitophagy was significantly enhanced. PGC-1α significantly promoted autophagic flux and induced autolysosome formation. More specifically, the autophagic clearance of mitochondria was enhanced by PGC-1α regulation, indicating the important role of mitophagy. Pharmacological inhibition or knockdown of ULK1 expression impaired autophagic/mitophagic activity, thus abolishing the neuroprotective effects of PGC-1α.
Conclusions
Mechanistically, in AIS, PGC-1α promotes autophagy and mitophagy through ULK1 and reduces NLRP3 activation. Our findings indicate that microglial PGC-1α may be a promising therapeutic target for AIS.
Journal Article
Sulfide catabolism ameliorates hypoxic brain injury
2021
The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain’s sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury.
The brain is sensitive to oxygen deprivation. Here, the authors show in experimental animals that sensitivity to hypoxia is inversely related to the level of sulfide:quinone oxidoreductast (SQOR) and the capacity to catabolize sulfide in the brain.
Journal Article