Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
57
result(s) for
"Brain Stem Neoplasms - cerebrospinal fluid"
Sort by:
Co-detection of mutations and methylations in cerebrospinal fluid ctDNA for minimally-invasive diagnosis of brainstem glioma
2025
Background
Genetic and epigenetic profiles are critical in managing brainstem gliomas (BSG), whose heterogeneity is far beyond the realm of the Diffuse midline glioma, H3K27 altered. Cerebrospinal fluid (CSF) circulating tumor DNA (ctDNA)-based liquid biopsy provides minimally-invasive strategies to acquire molecular information for brain tumors, whereas there is a deficiency in techniques for co-detection of genetic and epigenetic alterations due to the limited yield of ctDNA. This study aims to develop a reliable minimally-invasive approach to simultaneously detect the mutation and methylation profiles in the CSF ctDNA of BSGs, thereby enhancing diagnostic accuracy, prognostic capability, and monitoring potential.
Methods
A cohort of 80 BSG cases with 138 CSF samples and 71 tissues was retrospectively established. Public tissue methylation profiles (
N
= 1016) were used for the development of H3K27M and IDH mutation-specific assay. The mutation and methylation co-detection classifier (BSGdiag) was trained and tested in tissue cohorts and further validated in CSF samples. CSF Methylation Risk Score (MRS) was defined and used for prognostication and monitoring.
Results
The methylation assay demonstrated robust three-class (H3K27M-mut, IDH-mut and double-wildtype) classification with microAUC values of 1.00, 0.973, and 0.813 across public datasets, tissue cohorts, and CSF samples, respectively. BSGdiag achieved a sensitivity of 95.6%, specificity of 83.3%, and AUC of 0.949 for the H3K27M subtype, and a microAUC of 0.990 for the three-class classification in CSFs. MRS-stratified CSF methylation risk group was an independent prognostic factor (HR = 2.61, 95% CI: 1.09–6.25,
P
= 0.032). Methylation information in CSF remained even with clinical, radiological and CSF genetic indications of no disease, suggesting its utility in monitoring minimal residual disease.
Conclusions
The study de novo developed the first methylation assay for robust BSG molecular subtyping and introduced a novel methodology for co-detecting CSF ctDNA mutations and methylation in BSGs. The BSGdiag enhances the utility of ctDNA by leveraging both genetic and epigenetic information. Its comprehensiveness, minimal invasiveness, robustness, and reliability make it highly promising for future clinical applications and trial designs.
Journal Article
Characterizing the pharmacokinetics of panobinostat in a non-human primate model for the treatment of diffuse intrinsic pontine glioma
by
Odabas Arman
,
Lester McCully Cynthia M
,
Figg, William D
in
Animal models
,
Brain cancer
,
Cell culture
2020
PurposeDiffuse intrinsic pontine glioma (DIPG) is one of the deadliest forms of childhood cancers. To date, no effective treatment options have been developed. Recent drug screening studies identified the HDAC inhibitor panobinostat as an active agent against DIPG cells lines and animal models. To guide in the clinical development of panobinostat, we evaluated the CNS pharmacokinetics of panobinostat using CSF as a surrogate to CNS tissue penetration in a pre-clinical nonhuman primate (NHP) model after oral administration.MethodsPanobinostat was administered orally to NHP (n = 3) at doses 1.0, 1.8, 2.4, and 3.0 mg/kg (human equivalent dose: 20, 36, 48, 60 mg/m2, respectively). The subjects served as their own controls where possible. Serial, paired CSF and plasma samples were collected for 0–48 h. Panobinostat was quantified via a validated uHPLC-MS/MS method. Pharmacokinetic (PK) parameters were calculated using non-compartmental methods.ResultsCSF penetration of panobinostat after systemic delivery was low, with levels detectable in only two subjects.ConclusionThe CSF penetration of panobinostat was low following oral administration in this pre-clinical NHP model predictive of human PK.
Journal Article
GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas
2022
Diffuse intrinsic pontine glioma (DIPG) and other H3K27M-mutated diffuse midline gliomas (DMGs) are universally lethal paediatric tumours of the central nervous system
1
. We have previously shown that the disialoganglioside GD2 is highly expressed on H3K27M-mutated glioma cells and have demonstrated promising preclinical efficacy of GD2-directed chimeric antigen receptor (CAR) T cells
2
, providing the rationale for a first-in-human phase I clinical trial (NCT04196413). Because CAR T cell-induced brainstem inflammation can result in obstructive hydrocephalus, increased intracranial pressure and dangerous tissue shifts, neurocritical care precautions were incorporated. Here we present the clinical experience from the first four patients with H3K27M-mutated DIPG or spinal cord DMG treated with GD2-CAR T cells at dose level 1 (1 × 10
6
GD2-CAR T cells per kg administered intravenously). Patients who exhibited clinical benefit were eligible for subsequent GD2-CAR T cell infusions administered intracerebroventricularly
3
. Toxicity was largely related to the location of the tumour and was reversible with intensive supportive care. On-target, off-tumour toxicity was not observed. Three of four patients exhibited clinical and radiographic improvement. Pro-inflammatory cytokine levels were increased in the plasma and cerebrospinal fluid. Transcriptomic analyses of 65,598 single cells from CAR T cell products and cerebrospinal fluid elucidate heterogeneity in response between participants and administration routes. These early results underscore the promise of this therapeutic approach for patients with H3K27M-mutated DIPG or spinal cord DMG.
A phase I dose-escalation trial of GD2-CAR T cells in children and young adults with diffuse midline gliomas to assess the feasibility of manufacturing, safety and tolerability, and to preliminarily assess efficacy.
Journal Article
Molecular profiling of tumors of the brainstem by sequencing of CSF-derived circulating tumor DNA
2019
Brainstem gliomas are molecularly heterogeneous diseases, many of which are difficult to safely surgically resect and have limited treatment options due to their eloquent location. These constraints pose challenges to biopsy, which limits the use of routine molecular profiling and identification of personalized therapies. Here, we explored the potential of sequencing of circulating tumor DNA (ctDNA) isolated from the cerebrospinal fluid (CSF) of brainstem glioma patients as a less invasive approach for tumor molecular profiling. CSF was obtained from patients either intraoperatively (91.2%, 52/57), from ventricular-peritoneal shunt (3.5%, 2/57), or by lumbar puncture (5.3%, 3/57), all prior to surgical manipulation of the tumor. Deep sequencing of glioma-associated genes was performed on CSF-derived ctDNA and, where available, matched blood and tumor DNA from 57 patients, including nine medullary and 23 diffuse intrinsic pontine gliomas (DIPG). At least one tumor-specific mutation was detected in over 82.5% of CSF ctDNA samples (47/57). In cases with primary tumors harboring at least one mutation, alterations were identified in the CSF ctDNA of 97.3% of cases (36/37). In over 83% (31/37) of cases, all primary tumor alterations were detected in the CSF, and in 91.9% (34/37) of cases, at least half of the alterations were identified. Among ten patients found to have primary tumors negative for mutations, 30% (3/10) had detectable somatic alterations in the CSF. Finally, mutation detection using plasma ctDNA was less sensitive than sequencing the CSF ctDNA (38% vs. 100%, respectively). Our study indicates that deep sequencing of CSF ctDNA is a reliable technique for detecting tumor-specific alterations in brainstem tumors. This approach may offer an alternative approach to stereotactic biopsy for molecular profiling of brainstem tumors.
Journal Article
FGL2 promotes tumor progression in the CNS by suppressing CD103+ dendritic cell differentiation
2019
Few studies implicate immunoregulatory gene expression in tumor cells in arbitrating brain tumor progression. Here we show that fibrinogen-like protein 2 (FGL2) is highly expressed in glioma stem cells and primary glioblastoma (GBM) cells. FGL2 knockout in tumor cells did not affect tumor-cell proliferation in vitro or tumor progression in immunodeficient mice but completely impaired GBM progression in immune-competent mice. This impairment was reversed in mice with a defect in dendritic cells (DCs) or CD103
+
DC differentiation in the brain and in tumor-draining lymph nodes. The presence of FGL2 in tumor cells inhibited granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced CD103
+
DC differentiation by suppressing NF-κB, STAT1/5, and p38 activation. These findings are relevant to GBM patients because a low level of
FGL2
expression with concurrent high
GM-CSF
expression is associated with higher
CD8B
expression and longer survival. These data provide a rationale for therapeutic inhibition of FGL2 in brain tumors.
Fibrinogen-like protein 2 (FGL2) mediates immune suppression in glioblastoma (GBM). Here, the authors show that FGL-2 expressed by GBM cancer cells acts by suppressing the differentiation of CD103+ DC cells required to activate the anti-tumor CD8+ T cell response via blocking GM-CSF signalling at NFKB, STAT1/5 and p38 level.
Journal Article
Breaking boundaries: role of the brain barriers in metastatic process
2025
Brain metastases (BMs) are the most common intracranial tumors in adults and occur 3–10 times more frequently than primary brain tumors. Despite intensive multimodal therapies, including resection, radiotherapy, and chemotherapy, BMs are associated with poor prognosis and remain challenging to treat. BMs predominantly originate from primary lung (20–56%), breast (5–20%), and melanoma (7–16%) tumors, although they can arise from other cancer types less frequently. The metastatic cascade is a multistep process involving local invasion, intravasation into the bloodstream or lymphatic system, extravasation into normal tissue, and colonization of the distal site. After reaching the brain, circulating tumor cells (CTCs) breach the blood–brain barrier (BBB).
The selective permeability of the BBB poses a significant challenge for therapeutic compounds, limiting the treatment efficacy of BMs. Understanding the mechanisms of tumor cell interactions with the BBB is crucial for the development of effective treatments. This review provides an in-depth analysis of the brain barriers, including the BBB, blood-spinal cord barrier, blood-meningeal barrier, blood-arachnoid barrier, and blood-cerebrospinal fluid barrier. It explores the molecular and cellular components of these barriers and their roles in brain metastasis, highlighting the importance of this knowledge for identifying druggable targets to prevent or limit BM formation.
Journal Article
Leukaemia hijacks a neural mechanism to invade the central nervous system
2018
Acute lymphoblastic leukaemia (ALL) has a marked propensity to metastasize to the central nervous system (CNS). In contrast to brain metastases from solid tumours, metastases of ALL seldom involve the parenchyma but are isolated to the leptomeninges, which is an infrequent site for carcinomatous invasion. Although metastasis to the CNS occurs across all subtypes of ALL, a unifying mechanism for invasion has not yet been determined. Here we show that ALL cells in the circulation are unable to breach the blood–brain barrier in mice; instead, they migrate into the CNS along vessels that pass directly between vertebral or calvarial bone marrow and the subarachnoid space. The basement membrane of these bridging vessels is enriched in laminin, which is known to coordinate pathfinding of neuronal progenitor cells in the CNS. The laminin receptor α6 integrin is expressed in most cases of ALL. We found that α6 integrin–laminin interactions mediated the migration of ALL cells towards the cerebrospinal fluid in vitro. Mice with ALL xenografts were treated with either a PI3Kδ inhibitor, which decreased α6 integrin expression on ALL cells, or specific α6 integrin-neutralizing antibodies and showed significant reductions in ALL transit along bridging vessels, blast counts in the cerebrospinal fluid and CNS disease symptoms despite minimally decreased bone marrow disease burden. Our data suggest that α6 integrin expression, which is common in ALL, allows cells to use neural migratory pathways to invade the CNS.
Expression of α6 integrin enables acute lymphoblastic leukaemia cells to use neural migratory pathways to invade the central nervous system and metastasize to the brain.
Journal Article
Venetoclax penetrates in cerebrospinal fluid of an acute myeloid leukemia patient with leptomeningeal involvement
by
Parrinello Nunziatina Laura
,
Piccolo, Gianna Maria
,
Di Raimondo Francesco
in
Acute myeloid leukemia
,
Blood-brain barrier
,
Bone marrow transplantation
2022
Relapse at the central nervous system (CNS) in acute myeloid leukemia (AML) carries a dismal prognosis. Treatment options are limited to intrathecal therapy, high-dose cytarabine, high-dose methotrexate, and radiotherapy. Novel strategies are needed. Venetoclax has recently been approved by the FDA, in combination with hypomethylating agents or low-dose cytarabine, for elderly adults or patients ineligible for intensive chemotherapy affected by AML. However, little is known on its efficacy in patients with leptomeningeal involvement. Here, we present a case of a 52-year-old patient affected by AML relapsed at CNS after allogeneic bone marrow transplantation who was treated with venetoclax. We evaluated the concentration of the drug in cerebrospinal fluid (CSF) by HPLC MS/MS method on three different occasions to verify the penetration of the drug through the brain–blood barrier and we observed that the concentration in CSF was similar to the IC50 established in vitro.
Journal Article
Early central nervous system relapse of monomorphic epitheliotropic intestinal T-cell lymphoma after cord blood transplantation
2021
Monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL) is a rare subtype of intestinal T-cell lymphoma that occurs mostly in Asia. CHOP-like therapy is usually selected, but the prognosis is very poor. This report concerns a 43-year-old woman with newly diagnosed stage IVA MEITL. The patient obtained a partial response after 4 cycles of GDP (gemcitabine, dexamethasone, cisplatin) and achieved a complete response (CR) after cord blood transplantation (CBT) conditioned with total body irradiation, cyclophosphamide, and cytarabine. Seven months after transplantation, the patient experienced cognitive impairment. Magnetic resonance imaging of the brain showed a high-intensity lesion in the right cerebral peduncle and internal capsule. A cerebrospinal fluid examination confirmed central nervous system (CNS) relapse of MEITL. After 3 cycles of MPV (methotrexate, procarbazine, vincristine) followed by whole-brain radiotherapy, her cognitive impairment improved. Due to disease progression, she died 6 months after CNS relapse. Given the CNS relapse after achieving a CR with GDP and CBT in this patient, CNS prophylaxis during first-line therapy may be beneficial in the treatment of MEITL.
Journal Article