Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
152,835
result(s) for
"Brain injury"
Sort by:
The someday birds
by
Pla, Sally J., author
in
Autism Juvenile fiction.
,
Obsessive-compulsive disorder Juvenile fiction.
,
Brothers and sisters Juvenile fiction.
2017
Charlie, twelve, who has autism and obsessive compulsive disorder, must endure a cross-country trip with his siblings and a strange babysitter to visit their father, who will undergo brain surgery.
Liberal or Restrictive Transfusion Strategy in Patients with Traumatic Brain Injury
2024
The effect of a liberal transfusion strategy as compared with a restrictive strategy on outcomes in critically ill patients with traumatic brain injury is unclear.
We randomly assigned adults with moderate or severe traumatic brain injury and anemia to receive transfusion of red cells according to a liberal strategy (transfusions initiated at a hemoglobin level of ≤10 g per deciliter) or a restrictive strategy (transfusions initiated at ≤7 g per deciliter). The primary outcome was an unfavorable outcome as assessed by the score on the Glasgow Outcome Scale-Extended at 6 months, which we categorized with the use of a sliding dichotomy that was based on the prognosis of each patient at baseline. Secondary outcomes included mortality, functional independence, quality of life, and depression at 6 months.
A total of 742 patients underwent randomization, with 371 assigned to each group. The analysis of the primary outcome included 722 patients. The median hemoglobin level in the intensive care unit was 10.8 g per deciliter in the group assigned to the liberal strategy and 8.8 g per deciliter in the group assigned to the restrictive strategy. An unfavorable outcome occurred in 249 of 364 patients (68.4%) in the liberal-strategy group and in 263 of 358 (73.5%) in the restrictive-strategy group (adjusted absolute difference, restrictive strategy vs. liberal strategy, 5.4 percentage points; 95% confidence interval, -2.9 to 13.7). Among survivors, a liberal strategy was associated with higher scores on some but not all the scales assessing functional independence and quality of life. No association was observed between the transfusion strategy and mortality or depression. Venous thromboembolic events occurred in 8.4% of the patients in each group, and acute respiratory distress syndrome occurred in 3.3% and 0.8% of patients in the liberal-strategy and restrictive-strategy groups, respectively.
In critically ill patients with traumatic brain injury and anemia, a liberal transfusion strategy did not reduce the risk of an unfavorable neurologic outcome at 6 months. (Funded by the Canadian Institutes of Health Research and others; HEMOTION ClinicalTrials.gov number, NCT03260478.).
Journal Article
Hypothermia for Intracranial Hypertension after Traumatic Brain Injury
by
Harris, Bridget A
,
Andrews, Peter J.D
,
Rhodes, Jonathan K.J
in
Adult
,
Arterial Pressure - physiology
,
Barbiturates
2015
In this randomized trial involving patients with traumatic brain injury and elevated intracranial pressure, therapeutic hypothermia plus standard care to reduce intracranial pressure did not result in outcomes better than those with standard care alone.
In Europe, traumatic brain injury is the most common cause of permanent disability in people younger than 40 years of age, with the annual cost exceeding €33 billion (approximately $37.5 billion in U.S. dollars).
1
,
2
Recent statistics show a 21% increase in the incidence of traumatic brain injury during the past 5 years — three times greater than the increase in population. Despite this, management of traumatic brain injury has been underrepresented in medical research as compared with other health problems.
3
Consequently, there are few data to support the commonly used stage 2 interventions (Figure 1) for the management of . . .
Journal Article
Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial
Tranexamic acid reduces surgical bleeding and decreases mortality in patients with traumatic extracranial bleeding. Intracranial bleeding is common after traumatic brain injury (TBI) and can cause brain herniation and death. We aimed to assess the effects of tranexamic acid in patients with TBI.
This randomised, placebo-controlled trial was done in 175 hospitals in 29 countries. Adults with TBI who were within 3 h of injury, had a Glasgow Coma Scale (GCS) score of 12 or lower or any intracranial bleeding on CT scan, and no major extracranial bleeding were eligible. The time window for eligibility was originally 8 h but in 2016 the protocol was changed to limit recruitment to patients within 3 h of injury. This change was made blind to the trial data, in response to external evidence suggesting that delayed treatment is unlikely to be effective. We randomly assigned (1:1) patients to receive tranexamic acid (loading dose 1 g over 10 min then infusion of 1 g over 8 h) or matching placebo. Patients were assigned by selecting a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients, caregivers, and those assessing outcomes were masked to allocation. The primary outcome was head injury-related death in hospital within 28 days of injury in patients treated within 3 h of injury. We prespecified a sensitivity analysis that excluded patients with a GCS score of 3 and those with bilateral unreactive pupils at baseline. All analyses were done by intention to treat. This trial was registered with ISRCTN (ISRCTN15088122), ClinicalTrials.gov (NCT01402882), EudraCT (2011-003669-14), and the Pan African Clinical Trial Registry (PACTR20121000441277).
Between July 20, 2012, and Jan 31, 2019, we randomly allocated 12 737 patients with TBI to receive tranexamic acid (6406 [50·3%] or placebo [6331 [49·7%], of whom 9202 (72·2%) patients were treated within 3 h of injury. Among patients treated within 3 h of injury, the risk of head injury-related death was 18·5% in the tranexamic acid group versus 19·8% in the placebo group (855 vs 892 events; risk ratio [RR] 0·94 [95% CI 0·86–1·02]). In the prespecified sensitivity analysis that excluded patients with a GCS score of 3 or bilateral unreactive pupils at baseline, the risk of head injury-related death was 12·5% in the tranexamic acid group versus 14·0% in the placebo group (485 vs 525 events; RR 0·89 [95% CI 0·80–1·00]). The risk of head injury-related death reduced with tranexamic acid in patients with mild-to-moderate head injury (RR 0·78 [95% CI 0·64–0·95]) but not in patients with severe head injury (0·99 [95% CI 0·91–1·07]; p value for heterogeneity 0·030). Early treatment was more effective than was later treatment in patients with mild and moderate head injury (p=0·005) but time to treatment had no obvious effect in patients with severe head injury (p=0·73). The risk of vascular occlusive events was similar in the tranexamic acid and placebo groups (RR 0·98 (0·74–1·28). The risk of seizures was also similar between groups (1·09 [95% CI 0·90–1·33]).
Our results show that tranexamic acid is safe in patients with TBI and that treatment within 3 h of injury reduces head injury-related death. Patients should be treated as soon as possible after injury.
National Institute for Health Research Health Technology Assessment, JP Moulton Charitable Trust, Department of Health and Social Care, Department for International Development, Global Challenges Research Fund, Medical Research Council, and Wellcome Trust (Joint Global Health Trials scheme).
For the Arabic, Chinese, French, Hindi, Japanese, Spanish and Urdu translations of the abstract see Supplementary Material.
Journal Article
Modulation of brain activity in brain-injured patients with a disorder of consciousness in intensive care with repeated 10-Hz transcranial alternating current stimulation (tACS): a randomised controlled trial protocol
by
Williams, Virginie
,
Arbour, Caroline
,
Williamson, David
in
Adult
,
Adult intensive & critical care
,
Adult neurology
2024
IntroductionTherapeutic interventions for disorders of consciousness lack consistency; evidence supports non-invasive brain stimulation, but few studies assess neuromodulation in acute-to-subacute brain-injured patients. This study aims to validate the feasibility and assess the effect of a multi-session transcranial alternating current stimulation (tACS) intervention in subacute brain-injured patients on recovery of consciousness, related brain oscillations and brain network dynamics.Methods and analysesThe study is comprised of two phases: a validation phase (n=12) and a randomised controlled trial (n=138). Both phases will be conducted in medically stable brain-injured adult patients (traumatic brain injury and hypoxic-ischaemic encephalopathy), with a Glasgow Coma Scale score ≤12 after continuous sedation withdrawal. Recruitment will occur at the intensive care unit of a Level 1 Trauma Centre in Montreal, Quebec, Canada. The intervention includes a 20 min 10 Hz tACS at 1 mA intensity or a sham session over parieto-occipital cortical sites, repeated over five consecutive days. The current’s frequency targets alpha brain oscillations (8–13 Hz), known to be associated with consciousness. Resting-state electroencephalogram (EEG) will be recorded four times daily for five consecutive days: pre and post-intervention, at 60 and 120 min post-tACS. Two additional recordings will be included: 24 hours and 1-week post-protocol. Multimodal measures (blood samples, pupillometry, behavioural consciousness assessments (Coma Recovery Scale-revised), actigraphy measures) will be acquired from baseline up to 1 week after the stimulation. EEG signal analysis will focus on the alpha bandwidth (8–13 Hz) using spectral and functional network analyses. Phone assessments at 3, 6 and 12 months post-tACS, will measure long-term functional recovery, quality of life and caregivers’ burden.Ethics and disseminationEthical approval for this study has been granted by the Research Ethics Board of the CIUSSS du Nord-de-l’Île-de-Montréal (Project ID 2021–2279). The findings of this two-phase study will be submitted for publication in a peer-reviewed academic journal and submitted for presentation at conferences. The trial’s results will be published on a public trial registry database (ClinicalTrials.gov).Trial registration number NCT05833568.
Journal Article
Cognitive Motor Dissociation in Disorders of Consciousness
2024
Among 241 persons with disorders of consciousness who had no observable response to commands, 25% had a verifiable response to commands on EEG or functional MRI, a condition known as cognitive motor dissociation.
Journal Article
Photobiomodulation using low-level laser therapy (LLLT) for patients with chronic traumatic brain injury: a randomized controlled trial study protocol
by
de Andrade, Almir Ferreira
,
Poiani, Guilherme da Cruz Ribeiro
,
Salgado, Afonso Shiguemi Inoue
in
Adolescent
,
Adult
,
Affect - radiation effects
2018
Background
Photobiomodulation using low-level laser therapy (LLLT) has been tested as a new technique to optimize recovery of patients with traumatic brain injury (TBI). The aim of this study is to evaluate inhibitory attentional control after 18 sessions of active LLLT and compare with the placebo group (sham LLLT). Our exploratory analysis will evaluate the efficacy of the active LLLT on verbal and visuospatial episodic memory, executive functions (working memory, verbal and visuospatial fluency, attentional processes), and anxiety and depressive symptoms compared to the sham group.
Methods/Design
A randomized double-blinded trial will be made in 36 patients with moderate and severe TBI. The active LLLT will use an optical device composed of LEDs emitting 632 nm of radiation at the site with full potency of 830 mW. The cranial region with an area of 400 cm
2
will be irradiated for 30 min, giving a total dose per session of 3.74 J/cm
2
. The sham LLLT group contains only an LED device with power < 1 mW, only serving to simulate the irradiation. Each patient will be irradiated three times per week for six weeks, totaling 18 sessions. Neuropsychological assessments will be held one week before the beginning of the sessions, after one week, and three months after the end of LLLT sessions. Memory domain, attention, executive functioning, and visual construction will be evaluated, in addition to symptoms of depression, anxiety, and social demographics.
Discussion
LLLT has been demonstrated as a safe and effective technique in significantly improving the memory, attention, and mood performance in healthy and neurologic patients. We expect that our trial can complement previous finds, as an effective low-cost therapy to improve cognitive sequel after TBI.
Trial registration
ClinicalTrials.gov,
NCT02393079
. Registered on 20 February 2015.
Journal Article
Moderate and severe traumatic brain injury in adults
2008
Traumatic brain injury (TBI) is a major health and socioeconomic problem that affects all societies. In recent years, patterns of injury have been changing, with more injuries, particularly contusions, occurring in older patients. Blast injuries have been identified as a novel entity with specific characteristics. Traditional approaches to the classification of clinical severity are the subject of debate owing to the widespread policy of early sedation and ventilation in more severely injured patients, and are being supplemented with structural and functional neuroimaging. Basic science research has greatly advanced our knowledge of the mechanisms involved in secondary damage, creating opportunities for medical intervention and targeted therapies; however, translating this research into patient benefit remains a challenge. Clinical management has become much more structured and evidence based since the publication of guidelines covering many aspects of care. In this Review, we summarise new developments and current knowledge and controversies, focusing on moderate and severe TBI in adults. Suggestions are provided for the way forward, with an emphasis on epidemiological monitoring, trauma organisation, and approaches to management.
Journal Article
Clinical Trial of Fluid Infusion Rates for Pediatric Diabetic Ketoacidosis
by
Schunk, Jeff E
,
DePiero, Andrew D
,
Ghetti, Simona
in
Adolescent
,
Brain Edema - etiology
,
Brain Injuries - diagnosis
2018
Diabetic ketoacidosis in children may cause brain injury. In this randomized, controlled trial, neither the rate of administration nor the sodium chloride content of intravenous fluids significantly influenced neurologic outcomes in children with diabetic ketoacidosis.
Journal Article
Acute and chronic traumatic encephalopathies: pathogenesis and biomarkers
2013
Traumatic brain injury (TBI) can occur as a single severe cranial impact or as repetitive concussions, and commonly affects professional athletes in contact sports and soldiers exposed to explosions. DeKosky and colleagues describe the distinct pathological changes accompanying each type of TBI, and characteristics of the resultant neuropathology, which frequently involves amyloid-β and tau aggregates. Potential biomarkers of TBI-induced damage are also outlined.
Over the past decade, public awareness of the long-term pathological consequences of traumatic brain injury (TBI) has increased. Such awareness has been stimulated mainly by reports of progressive neurological dysfunction in athletes exposed to repetitive concussions in high-impact sports such as boxing and American football, and by the rising number of TBIs in war veterans who are now more likely to survive explosive blasts owing to improved treatment. Moreover, the entity of chronic traumatic encephalopathy (CTE)—which is marked by prominent neuropsychiatric features including dementia, parkinsonism, depression, agitation, psychosis, and aggression—has become increasingly recognized as a potential late outcome of repetitive TBI. Annually, about 1% of the population in developed countries experiences a clinically relevant TBI. The goal of this Review is to provide an overview of the latest understanding of CTE pathophysiology, and to delineate the key issues that are challenging clinical and research communities, such as accurate quantification of the risk of CTE, and development of reliable biomarkers for single-incident TBI and CTE.
Key Points
Traumatic brain injury (TBI) can lead to delayed-onset neurodegenerative syndromes that include Alzheimer disease (AD) and chronic traumatic encephalopathy (CTE)
CTE has gained attention owing to increasing media coverage of neuropsychiatric dysfunction in players of high-impact sport, such as boxing and American football
Brain pathology after single-incident severe TBI is similar to early amyloid pathology in AD, whereas repetitive TBI can produce tauopathy with or without amyloidosis that resembles pathology of boxers' dementia
Estimation of the risk and prevalence of CTE remains challenging, and accurate prediction of TBI outcome and CTE risk for soldiers and players of high-impact sports is not yet possible
Several genetic risk factors for CTE have been proposed but remain to be established
Cerebrospinal fluid and neuroimaging biomarkers of TBI and CTE are emerging and hold promise for antemortem diagnosis of CTE, prediction of CTE risk, and monitoring of neuropathology progression
Journal Article