Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,719 result(s) for "Brain tumor classification"
Sort by:
A classification of MRI brain tumor based on two stage feature level ensemble of deep CNN models
The brain tumor is one of the deadliest cancerous diseases and its severity has turned it to the leading cause of cancer related mortality. The treatment procedure of the brain tumor depends on the type, location and size of the tumor. Relying solely on human inspection for precise categorization can lead to inevitably dangerous situation. This manual diagnosis process can be improved and accelerated through an automated Computer Aided Diagnosis (CADx) system. In this article, a novel approach using two-stage feature ensemble of deep Convolutional Neural Networks (CNN) is proposed for precise and automatic classification of brain tumors. Three unique Magnetic Resonance Imaging (MRI) datasets and a dataset merging all the unique datasets are considered. The datasets contain three types of brain tumor (meningioma, glioma, pituitary) and normal brain images. From five pre-trained models and a proposed CNN model, the best models are chosen and concatenated in two stages for feature extraction. The best classifier is also chosen among five different classifiers based on accuracy. From the extracted features, most substantial features are selected using Principal Component Analysis (PCA) and fed into the classifier. The robustness of the proposed two stage ensemble model is analyzed using several performance metrics and three different experiments. Through the prominent performance, the proposed model is able to outperform other existing models attaining an average accuracy of 99.13% by optimization of the developed algorithms. Here, the individual accuracy for Dataset 1, Dataset 2, Dataset 3, and Merged Dataset is 99.67%, 98.16%, 99.76%, and 98.96% respectively. Finally a User Interface (UI) is created using the proposed model for real time validation. •Present a new two-stage ensemble approach for multi-classification of brain tumors.•CNN models and classifiers are selected through experiments and trials to build the two-stage ensemble model.•Model's robustness is assured by three different experiments on the datasets.•Evaluation and validation are done through comparative analysis and real-time performance.
Deep Learning for Smart Healthcare—A Survey on Brain Tumor Detection from Medical Imaging
Advances in technology have been able to affect all aspects of human life. For example, the use of technology in medicine has made significant contributions to human society. In this article, we focus on technology assistance for one of the most common and deadly diseases to exist, which is brain tumors. Every year, many people die due to brain tumors; based on “braintumor” website estimation in the U.S., about 700,000 people have primary brain tumors, and about 85,000 people are added to this estimation every year. To solve this problem, artificial intelligence has come to the aid of medicine and humans. Magnetic resonance imaging (MRI) is the most common method to diagnose brain tumors. Additionally, MRI is commonly used in medical imaging and image processing to diagnose dissimilarity in different parts of the body. In this study, we conducted a comprehensive review on the existing efforts for applying different types of deep learning methods on the MRI data and determined the existing challenges in the domain followed by potential future directions. One of the branches of deep learning that has been very successful in processing medical images is CNN. Therefore, in this survey, various architectures of CNN were reviewed with a focus on the processing of medical images, especially brain MRI images.
MRI-Based Brain Tumor Classification Using Ensemble of Deep Features and Machine Learning Classifiers
Brain tumor classification plays an important role in clinical diagnosis and effective treatment. In this work, we propose a method for brain tumor classification using an ensemble of deep features and machine learning classifiers. In our proposed framework, we adopt the concept of transfer learning and uses several pre-trained deep convolutional neural networks to extract deep features from brain magnetic resonance (MR) images. The extracted deep features are then evaluated by several machine learning classifiers. The top three deep features which perform well on several machine learning classifiers are selected and concatenated as an ensemble of deep features which is then fed into several machine learning classifiers to predict the final output. To evaluate the different kinds of pre-trained models as a deep feature extractor, machine learning classifiers, and the effectiveness of an ensemble of deep feature for brain tumor classification, we use three different brain magnetic resonance imaging (MRI) datasets that are openly accessible from the web. Experimental results demonstrate that an ensemble of deep features can help improving performance significantly, and in most cases, support vector machine (SVM) with radial basis function (RBF) kernel outperforms other machine learning classifiers, especially for large datasets.
Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network
The classification of brain tumors is performed by biopsy, which is not usually conducted before definitive brain surgery. The improvement of technology and machine learning can help radiologists in tumor diagnostics without invasive measures. A machine-learning algorithm that has achieved substantial results in image segmentation and classification is the convolutional neural network (CNN). We present a new CNN architecture for brain tumor classification of three tumor types. The developed network is simpler than already-existing pre-trained networks, and it was tested on T1-weighted contrast-enhanced magnetic resonance images. The performance of the network was evaluated using four approaches: combinations of two 10-fold cross-validation methods and two databases. The generalization capability of the network was tested with one of the 10-fold methods, subject-wise cross-validation, and the improvement was tested by using an augmented image database. The best result for the 10-fold cross-validation method was obtained for the record-wise cross-validation for the augmented data set, and, in that case, the accuracy was 96.56%. With good generalization capability and good execution speed, the new developed CNN architecture could be used as an effective decision-support tool for radiologists in medical diagnostics.
Multi-class brain tumor classification using residual network and global average pooling
A rapid increase in brain tumor cases mandates researchers for the automation of brain tumor detection and diagnosis. Multi-tumor brain image classification became a contemporary research task due to the diverse characteristics of tumors. Recently, deep neural networks are commonly used for medical image classification to assist neurologists. Vanishing gradient problem and overfitting are the demerits of the deep networks. In this paper, we have proposed a deep network model that uses ResNet-50 and global average pooling to resolve the vanishing gradient and overfitting problems. To evaluate the efficiency of the proposed model simulation has been carried out using a three-tumor brain magnetic resonance image dataset consisting of 3064 images. Key performance metrics have used to analyze the performance of the proposed model and its competitive models. We have achieved a mean accuracy of 97.08% and 97.48% with data augmentation and without data augmentation, respectively. Our proposed model outperforms existing models in classification accuracy.
Advancing Brain Tumor Classification through Fine-Tuned Vision Transformers: A Comparative Study of Pre-Trained Models
This paper presents a comprehensive study on the classification of brain tumor images using five pre-trained vision transformer (ViT) models, namely R50-ViT-l16, ViT-l16, ViT-l32, ViT-b16, and ViT-b32, employing a fine-tuning approach. The objective of this study is to advance the state-of-the-art in brain tumor classification by harnessing the power of these advanced models. The dataset utilized for experimentation consists of a total of 4855 images in the training set and 857 images in the testing set, encompassing four distinct tumor classes. The performance evaluation of each model is conducted through an extensive analysis encompassing precision, recall, F1-score, accuracy, and confusion matrix metrics. Among the models assessed, ViT-b32 demonstrates exceptional performance, achieving a high accuracy of 98.24% in accurately classifying brain tumor images. Notably, the obtained results outperform existing methodologies, showcasing the efficacy of the proposed approach. The contributions of this research extend beyond conventional methods, as it not only employs cutting-edge ViT models but also surpasses the performance of existing approaches for brain tumor image classification. This study not only demonstrates the potential of ViT models in medical image analysis but also provides a benchmark for future research in the field of brain tumor classification.
A Deep Learning Approach for Brain Tumor Classification and Segmentation Using a Multiscale Convolutional Neural Network
In this paper, we present a fully automatic brain tumor segmentation and classification model using a Deep Convolutional Neural Network that includes a multiscale approach. One of the differences of our proposal with respect to previous works is that input images are processed in three spatial scales along different processing pathways. This mechanism is inspired in the inherent operation of the Human Visual System. The proposed neural model can analyze MRI images containing three types of tumors: meningioma, glioma, and pituitary tumor, over sagittal, coronal, and axial views and does not need preprocessing of input images to remove skull or vertebral column parts in advance. The performance of our method on a publicly available MRI image dataset of 3064 slices from 233 patients is compared with previously classical machine learning and deep learning published methods. In the comparison, our method remarkably obtained a tumor classification accuracy of 0.973, higher than the other approaches using the same database.
A novel Swin transformer approach utilizing residual multi-layer perceptron for diagnosing brain tumors in MRI images
Serious consequences due to brain tumors necessitate a timely and accurate diagnosis. However, obstacles such as suboptimal imaging quality, issues with data integrity, varying tumor types and stages, and potential errors in interpretation hinder the achievement of precise and prompt diagnoses. The rapid identification of brain tumors plays a pivotal role in ensuring patient safety. Deep learning-based systems hold promise in aiding radiologists to make diagnoses swiftly and accurately. In this study, we present an advanced deep learning approach based on the Swin Transformer. The proposed method introduces a novel Hybrid Shifted Windows Multi-Head Self-Attention module (HSW-MSA) along with a rescaled model. This enhancement aims to improve classification accuracy, reduce memory usage, and simplify training complexity. The Residual-based MLP (ResMLP) replaces the traditional MLP in the Swin Transformer, thereby improving accuracy, training speed, and parameter efficiency. We evaluate the Proposed-Swin model on a publicly available brain MRI dataset with four classes, using only test data. Model performance is enhanced through the application of transfer learning and data augmentation techniques for efficient and robust training. The Proposed-Swin model achieves a remarkable accuracy of 99.92%, surpassing previous research and deep learning models. This underscores the effectiveness of the Swin Transformer with HSW-MSA and ResMLP improvements in brain tumor diagnosis. This method introduces an innovative diagnostic approach using HSW-MSA and ResMLP in the Swin Transformer, offering potential support to radiologists in timely and accurate brain tumor diagnosis, ultimately improving patient outcomes and reducing risks.
Convolutional Neural Network Techniques for Brain Tumor Classification (from 2015 to 2022): Review, Challenges, and Future Perspectives
Convolutional neural networks (CNNs) constitute a widely used deep learning approach that has frequently been applied to the problem of brain tumor diagnosis. Such techniques still face some critical challenges in moving towards clinic application. The main objective of this work is to present a comprehensive review of studies using CNN architectures to classify brain tumors using MR images with the aim of identifying useful strategies for and possible impediments in the development of this technology. Relevant articles were identified using a predefined, systematic procedure. For each article, data were extracted regarding training data, target problems, the network architecture, validation methods, and the reported quantitative performance criteria. The clinical relevance of the studies was then evaluated to identify limitations by considering the merits of convolutional neural networks and the remaining challenges that need to be solved to promote the clinical application and development of CNN algorithms. Finally, possible directions for future research are discussed for researchers in the biomedical and machine learning communities. A total of 83 studies were identified and reviewed. They differed in terms of the precise classification problem targeted and the strategies used to construct and train the chosen CNN. Consequently, the reported performance varied widely, with accuracies of 91.63–100% in differentiating meningiomas, gliomas, and pituitary tumors (26 articles) and of 60.0–99.46% in distinguishing low-grade from high-grade gliomas (13 articles). The review provides a survey of the state of the art in CNN-based deep learning methods for brain tumor classification. Many networks demonstrated good performance, and it is not evident that any specific methodological choice greatly outperforms the alternatives, especially given the inconsistencies in the reporting of validation methods, performance metrics, and training data encountered. Few studies have focused on clinical usability.
A novel Parametric Flatten-p Mish activation function based deep CNN model for brain tumor classification
The brain tumor is one of the deadliest diseases of all cancers. Influenced by the recent developments of convolutional neural networks (CNNs) in medical imaging, we have formed a CNN based model called BMRI-Net for brain tumor classification. As the activation function is one of the important modules of CNN, we have proposed a novel parametric activation function named Parametric Flatten-p Mish (PFpM) to improve the performance. PFpM can tackle the significant disadvantages of the pre-existing activation functions like neuron death and bias shift effect. The parametric approach of PFpM also offers the model some extra flexibility to learn the complex patterns more accurately from the data. To validate our proposed methodology, we have used two brain tumor datasets namely Figshare and Br35H. We have compared the performance of our model with state-of-the-art deep CNN models like DenseNet201, InceptionV3, MobileNetV2, ResNet50 and VGG19. Further, the comparative performance of PFpM has been presented with various activation functions like ReLU, Leaky ReLU, GELU, Swish and Mish. We have performed record-wise and subject-wise (patient-level) experiments for Figshare dataset whereas only record-wise experiments have been performed in case of Br35H dataset due to unavailability of subject-wise information. Further, the model has been validated using hold-out and 5-fold cross-validation techniques. On Figshare dataset, our model has achieved 99.57% overall accuracy with hold-out validation and 98.45% overall accuracy with 5-fold cross validation in case of record-wise data split. On the other hand, the model has achieved 97.91% overall accuracy with hold-out validation and 97.26% overall accuracy with 5-fold cross validation in case of subject-wise data split. Similarly, for Br35H dataset, our model has attained 99% overall accuracy with hold-out validation and 98.33% overall accuracy with 5-fold cross validation using record-wise data split. Hence, our findings can introduce a secondary procedure in the clinical diagnosis of brain tumors. •A unique CNN architecture for brain tumor classification.•A novel parametric piece-wise activation function named PFpM.•Achieved 99.57% and 99% overall classification accuracy on Figshare and Br35H dataset, respectively.•Comparative performance analysis of proposed model with state-of-the-art models.•Comparative performance analysis of models with different activation functions.