Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,264
result(s) for
"Breast Neoplasms - microbiology"
Sort by:
Prognostic correlations with the microbiome of breast cancer subtypes
2021
Alterations to the natural microbiome are linked to different diseases, and the presence or absence of specific microbes is directly related to disease outcomes. We performed a comprehensive analysis with unique cohorts of the four subtypes of breast cancer (BC) characterized by their microbial signatures, using a pan-pathogen microarray strategy. The signature (includes viruses, bacteria, fungi, and parasites) of each tumor subtype was correlated with clinical data to identify microbes with prognostic potential. The subtypes of BC had specific viromes and microbiomes, with ER+ and TN tumors showing the most and least diverse microbiome, respectively. The specific microbial signatures allowed discrimination between different BC subtypes. Furthermore, we demonstrated correlations between the presence and absence of specific microbes in BC subtypes with the clinical outcomes. This study provides a comprehensive map of the oncobiome of BC subtypes, with insights into disease prognosis that can be critical for precision therapeutic intervention strategies.
Journal Article
Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression
2020
Fusobacterium nucleatum
is an oral anaerobe recently found to be prevalent in human colorectal cancer (CRC) where it is associated with poor treatment outcome. In mice, hematogenous
F. nucleatum
can colonize CRC tissue using its lectin Fap2, which attaches to tumor-displayed Gal-GalNAc. Here, we show that Gal-GalNAc levels increase as human breast cancer progresses, and that occurrence of
F. nucleatum
gDNA in breast cancer samples correlates with high Gal-GalNAc levels. We demonstrate Fap2-dependent binding of the bacterium to breast cancer samples, which is inhibited by GalNAc. Intravascularly inoculated Fap2-expressing
F. nucleatum
ATCC 23726 specifically colonize mice mammary tumors, whereas Fap2-deficient bacteria are impaired in tumor colonization. Inoculation with
F. nucleatum
suppresses accumulation of tumor infiltrating T cells and promotes tumor growth and metastatic progression, the latter two of which can be counteracted by antibiotic treatment. Thus, targeting
F. nucleatum
or Fap2 might be beneficial during treatment of breast cancer.
High levels of
Fusobacterium nucleatum
have been associated with poor overall survival in patients with colorectal and esophageal cancer. Here, the authors show that
F. nucleatum
is abundant in breast cancer samples and that the colonization by
F. nucleatum
accelerates tumor growth and metastasis in preclinical breast cancer models.
Journal Article
The microbiome and breast cancer: a review
2019
The human microbiome plays an integral role in physiology, with most microbes considered benign or beneficial. However, some microbes are known to be detrimental to human health, including organisms linked to cancers and other diseases characterized by aberrant inflammation. Dysbiosis, a state of microbial imbalance with harmful bacteria species outcompeting benign bacteria, can lead to maladies including cancer. The microbial composition varies across body sites, with the gut, urogenital, and skin microbiomes particularly well characterized. However, the microbiome associated with normal breast tissue and breast diseases is poorly understood. Collectively, studies have shown that breast tissue has a distinct microbiome with particular species enriched in the breast tissue itself, as well as the nipple aspirate and gut bacteria of women with breast cancer. More importantly, the breast and associated microbiomes may modulate therapeutic response and serve as potential biomarkers for diagnosing and staging breast cancer.
Journal Article
The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease
2016
Globally breast cancer is the leading cause of cancer death among women. The breast consists of epithelium, stroma and a mucosal immune system that make up a complex microenvironment. Growing awareness of the role of microbes in the microenvironment recently has led to a series of findings important for human health. The microbiome has been implicated in cancer development and progression at a variety of body sites including stomach, colon, liver, lung and skin. In this study, we assessed breast tissue microbial signatures in intraoperatively obtained samples using 16S rDNA hypervariable tag sequencing. Our results indicate a distinct breast tissue microbiome that is different from the microbiota of breast skin tissue, breast skin swabs and buccal swabs. Furthermore, we identify distinct microbial communities in breast tissues from women with cancer as compared to women with benign breast disease. Malignancy correlated with enrichment in taxa of lower abundance including the genera
Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga
and
Lactobacillus
. This work confirms the existence of a distinct breast microbiome and differences between the breast tissue microbiome in benign and malignant disease. These data provide a foundation for future investigation on the role of the breast microbiome in breast carcinogenesis and breast cancer prevention.
Journal Article
Association of breast and gut microbiota dysbiosis and the risk of breast cancer: a case-control clinical study
by
Sánchez-Barrón, María Teresa
,
Robles-Sánchez, Cándido
,
Reina-Pérez, Iris
in
Adult
,
Aged
,
Analysis
2019
Background
Breast cancer ranks first in women, and is the second cause of death in this gender. In addition to genetics, the environment contributes to the development of the disease, although the factors involved are not well known. Among the latter is the influence of microorganisms and, therefore, attention is recently being paid to the mammary microbiota. We hypothesize that the risk of breast cancer could be associated with the composition and functionality of the mammary/gut microbiota, and that exposure to environmental contaminants (endocrine disruptors, EDCs) might contribute to alter these microbiota.
Methods
We describe a case-control clinical study that will be performed in women between 25 and 70 years of age. Cases will be women diagnosed and surgically intervened of breast cancer (stages I and II). Women with antecedents of cancer or advanced tumor stage (metastasis), or who have received antibiotic treatment within a period of 3 months prior to recruitment, or any neoadjuvant therapy, will be excluded. Controls will be women surgically intervened of breast augmentation or reduction. Women with oncological, gynecological or endocrine history, and those who have received antibiotic treatment within a period of 3 months prior to recruitment will also be excluded. Blood, urine, breast tissue and stool samples will be collected. Data regarding anthropometric, sociodemographic, reproductive history, tumor features and dietary habits will be gathered.
Metabolomic studies will be carried out in stool and breast tissue samples. Metagenomic studies will also be performed in stool and breast tissue samples to ascertain the viral, fungal, bacterial and archaea populations of the microbiota. Quantitation of estrogens, estrogen metabolites and EDCs in samples of serum, urine and breast tissue will also be performed.
Discussion
This is the first time that the contribution of bacteria, archaea, viruses and fungi together with their alteration by environmental contaminants to the risk of breast cancer will be evaluated in the same study. Results obtained could contribute to elucidate risk factors, improve the prognosis, as well as to propose novel intervention studies in this disease.
Trial registration
ClinicalTrials.gov
NCT03885648
, 03/25/2019. Retrospectively registered.
Journal Article
Microbial Dysbiosis Is Associated with Human Breast Cancer
by
Lee, Delphine J.
,
DiNome, Maggie L.
,
Shamonki, Jaime M.
in
Antibacterial agents
,
Antibiotics
,
Bacteria
2014
Breast cancer affects one in eight women in their lifetime. Though diet, age and genetic predisposition are established risk factors, the majority of breast cancers have unknown etiology. The human microbiota refers to the collection of microbes inhabiting the human body. Imbalance in microbial communities, or microbial dysbiosis, has been implicated in various human diseases including obesity, diabetes, and colon cancer. Therefore, we investigated the potential role of microbiota in breast cancer by next-generation sequencing using breast tumor tissue and paired normal adjacent tissue from the same patient. In a qualitative survey of the breast microbiota DNA, we found that the bacterium Methylobacterium radiotolerans is relatively enriched in tumor tissue, while the bacterium Sphingomonas yanoikuyae is relatively enriched in paired normal tissue. The relative abundances of these two bacterial species were inversely correlated in paired normal breast tissue but not in tumor tissue, indicating that dysbiosis is associated with breast cancer. Furthermore, the total bacterial DNA load was reduced in tumor versus paired normal and healthy breast tissue as determined by quantitative PCR. Interestingly, bacterial DNA load correlated inversely with advanced disease, a finding that could have broad implications in diagnosis and staging of breast cancer. Lastly, we observed lower basal levels of antibacterial response gene expression in tumor versus healthy breast tissue. Taken together, these data indicate that microbial DNA is present in the breast and that bacteria or their components may influence the local immune microenvironment. Our findings suggest a previously unrecognized link between dysbiosis and breast cancer which has potential diagnostic and therapeutic implications.
Journal Article
Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer
by
Eng, Charis
,
Tzeng, Alice
,
Downs-Kelly, Erinn
in
Aged
,
Analysis
,
Anti-Bacterial Agents - pharmacology
2021
Background
Currently, over half of breast cancer cases are unrelated to known risk factors, highlighting the importance of discovering other cancer-promoting factors. Since crosstalk between gut microbes and host immunity contributes to many diseases, we hypothesized that similar interactions could occur between the recently described breast microbiome and local immune responses to influence breast cancer pathogenesis.
Methods
Using 16S rRNA gene sequencing, we characterized the microbiome of human breast tissue in a total of 221 patients with breast cancer, 18 individuals predisposed to breast cancer, and 69 controls. We performed bioinformatic analyses using a DADA2-based pipeline and applied linear models with White’s
t
or Kruskal–Wallis
H
-tests with Benjamini–Hochberg multiple testing correction to identify taxonomic groups associated with prognostic clinicopathologic features. We then used network analysis based on Spearman coefficients to correlate specific bacterial taxa with immunological data from NanoString gene expression and 65-plex cytokine assays.
Results
Multiple bacterial genera exhibited significant differences in relative abundance when stratifying by breast tissue type (tumor, tumor adjacent normal, high-risk, healthy control), cancer stage, grade, histologic subtype, receptor status, lymphovascular invasion, or node-positive status, even after adjusting for confounding variables. Microbiome–immune networks within the breast tended to be bacteria-centric, with sparse structure in tumors and more interconnected structure in benign tissues. Notably,
Anaerococcus
,
Caulobacter
, and
Streptococcus
, which were major bacterial hubs in benign tissue networks, were absent from cancer-associated tissue networks. In addition,
Propionibacterium
and
Staphylococcus
, which were depleted in tumors, showed negative associations with oncogenic immune features;
Streptococcus
and
Propionibacterium
also correlated positively with T-cell activation-related genes.
Conclusions
This study, the largest to date comparing healthy versus cancer-associated breast microbiomes using fresh-frozen surgical specimens and immune correlates, provides insight into microbial profiles that correspond with prognostic clinicopathologic features in breast cancer. It additionally presents evidence for local microbial–immune interplay in breast cancer that merits further investigation and has preventative, diagnostic, and therapeutic potential.
Journal Article
Distinct microbial communities that differ by race, stage, or breast-tumor subtype in breast tissues of non-Hispanic Black and non-Hispanic White women
by
Lu, Lu
,
Makowski, Liza
,
Starlard-Davenport, Athena
in
631/326/41/2482
,
631/67/1347
,
Abundance
2019
Growing evidence highlights an association between an imbalance in the composition and abundance of bacteria in the breast tissue (referred as microbial dysbiosis) and breast cancer in women. However, studies on the breast tissue microbiome have not been conducted in non-Hispanic Black (NHB) women. We investigated normal and breast cancer tissue microbiota from NHB and non-Hispanic White (NHW) women to identify distinct microbial signatures by race, stage, or tumor subtype. Using 16S rRNA gene sequencing, we observed that phylum Proteobacteria was most abundant in normal (n = 8), normal adjacent to tumor (normal pairs, n = 11), and breast tumors from NHB and NHW women (n = 64), with fewer Firmicutes, Bacteroidetes, and Actinobacteria. Breast tissues from NHB women had a higher abundance of genus
Ralstonia
compared to NHW tumors, which could explain a portion of the breast cancer racial disparities. Analysis of tumor subtype revealed enrichment of family
Streptococcaceae
in TNBC. A higher abundance of genus
Bosea
(phylum Proteobacteria) increased with stage. This is the first study to identify racial differences in the breast tissue microbiota between NHB and NHW women. Further studies on the breast cancer microbiome are necessary to help us understand risk, underlying mechanisms, and identify potential microbial targets.
Journal Article
Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors
by
Lee, Delphine J.
,
Rivas, Magali N.
,
Duvall, Karen
in
631/326/2565/2134
,
692/4028/67/1347
,
Adult
2016
The microbiome impacts human health and disease. Until recently, human breast tissue and milk were presumed to be sterile. Here, we investigated the presence of microbes in the nipple aspirate fluid (NAF) and their potential association with breast cancer. We compared the NAF microbiome between women with a history of breast cancer (BC) and healthy control women (HC) using 16S rRNA gene amplicon sequencing. The NAF microbiome from BC and HC showed significant differences in community composition. Two Operational Taxonomic Units (OTUs) showed differences in relative abundances between NAF collected from BC and HC. In NAF collected from BC, there was relatively higher incidence of the genus
Alistipes.
By contrast, an unclassified genus from the
Sphingomonadaceae
family was relatively more abundant in NAF from HC. These findings reflect the ductal source DNA since there were no differences between areolar skin samples collected from BC and HC. Furthermore, the microbes associated with BC share an enzymatic activity, Beta-Glucuronidase, which may promote breast cancer. This is the first report of bacterial DNA in human breast ductal fluid and the differences between NAF from HC and BC. Further investigation of the ductal microbiome and its potential role in breast cancer are warranted.
Journal Article
Postmenopausal breast cancer and oestrogen associations with the IgA-coated and IgA-noncoated faecal microbiota
by
Milne, Ginger L
,
Fujiwara, Mutsunori
,
Shi, Jianxin
in
Breast cancer
,
Health risk assessment
,
High-performance liquid chromatography
2018
Background:The diversity and composition of the gut microbiota may affect breast cancer risk by modulating systemic levels of oestrogens and inflammation. The current investigation tested this hypothesis in postmenopausal women by identifying breast cancer associations with an inflammation marker, oestrogen levels, and faecal microbes that were or were not coated with mucosal immunoglobulin A (IgA).Methods:In this population-based study, we compared 48 postmenopausal breast cancer cases (75% stage 0-1, 88% oestrogen-receptor positive) to 48 contemporaneous, postmenopausal, normal-mammogram, age-matched controls. Microbiota metrics employed 16S rRNA gene amplicon sequencing from IgA-coated and -noncoated faecal microbes. High-performance liquid chromatography/mass spectrometry (HPLC/MS) and radioimmunoassay were used to quantify urine prostaglandin E metabolite (PGE-M), a possible marker of inflammation; urine oestrogens and oestrogen metabolites were quantified by HPLC/MS-MS.Results:Women with pre-treatment breast cancer had non-significantly elevated oestrogen levels; controls' (but not cases') oestrogens were directly correlated with their IgA-negative microbiota alpha diversity (P=0.012). Prostaglandin E metabolite levels were not associated with case status, oestrogen levels, or alpha diversity. Adjusted for oestrogens and other variables, cases had significantly reduced alpha diversity and altered composition of both their IgA-positive and IgA-negative faecal microbiota. Cases' faecal microbial IgA-positive imputed Immune System Diseases metabolic pathway genes were increased; also, cases' IgA-positive and IgA-negative imputed Genetic Information Processing pathway genes were decreased (P[els]0.01).Conclusions:Compared to controls, breast cancer cases had significant oestrogen-independent associations with the IgA-positive and IgA-negative gut microbiota. These suggest that the gut microbiota may influence breast cancer risk by altered metabolism, oestrogen recycling, and immune pressure.
Journal Article