Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,892 result(s) for "Breeding grounds"
Sort by:
The first documentation of the Nearctic–Paleotropical migratory route of the Arctic Warbler
The Arctic Warbler (Phylloscopus borealis) is a cryptically plumed songbird with an uncommon Nearctic–Paleotropical migratory strategy. Using light‐level geolocators, we provide the first documentation of the migratory routes and wintering locations of two territorial adult male Arctic Warblers from Denali National Park and Preserve, Alaska. After accounting for position estimation uncertainties and biases, we found that both individuals departed their breeding grounds in early September, stopped over in southeastern Russia and China during autumn migration, then wintered in the Philippines and the island of Palau. Our documentation of Arctic Warbler wintering on Palau suggests that additional study is needed to document their wintering range. Our study provides hitherto unknown information on stopover and wintering locations for Arctic Warblers and indicates that this species may migrate further overwater than previously thought. The Arctic Warbler is a Nearctic–Paleotropical migrant—a rare strategy for songbirds—and a species of conservation concern that presents few analogs for comparison. This study presents the first individual tracks of migratory routes for the species using light‐logging data recorders. Using data from two individuals, we describe the timing of migration, high‐use areas during migration, and discover a possible new wintering location for the species.
Morphological Variation and Spatial Distribution Patterns of Krascheninnikovia compacta (Losinsk.) Grubov in the Tibetan Antelope Breeding Grounds of the Western Kunlun Mountains
The study aims to analyze morphological variations and spatial distribution patterns of Krascheninnikovia compacta (Losinsk.) Grubov communities across 12 sampling areas at different elevations in the Tibetan antelope breeding grounds of the western Kunlun Mountains. Additionally, it projected the future climatically suitabie habitats of K. compacta under climate change scenarios, aiming to elucidate its community characteristics, spatial distribution dynamics, and the impacts of global warming on its growth. Integrated GIS, remote sensing, and unmanned aerial vehicles (UAVs) were used to investigate K. compacta communities. The Pearson correlation analysis revealed significant correlations between crown diameter, as well as between plant height and environmental factors. The redundancy analysis (RDA) results indicated that multiple environmental factors jointly explained the variation in plant height and crown diameter of K. compacta. Point pattern analysis, using the g(r) function combined with two null models, demonstrated changes in plant distribution during scale transitions. Additionally, the MaxEnt model was employed to project the potential suitable habitats of K. compacta under future climate scenarios. Overall, as the elevational gradient increases, the plant height of K. compacta gradually decreases while the crown diameter expands. Mean annual temperature (MAT) dominates the morphological variations in crown diameter and plant height, with lower temperatures correlating to shorter plant height and larger crown diameter. The complete spatial randomness (CSR) model indicates that across all elevations, the distribution patterns of plants transition sequentially from uniform to random, then clustered, and back to random as spatial scale increases. The heterogeneous Poisson (HP) model suggests that habitat heterogeneity is the primary driver of shifts in plant distribution patterns at larger scales. The MaxEnt model revealed distinct changes in suitable habitat areas of K. compacta under future climate scenarios. During 2061 to 2080s, its suitable habitats under the SSP126 and SSP585 pathways significantly contracted and expanded markedly, respectively.
Demographic and physiological signals of reproductive events in humpback whales on a southwest pacific breeding ground
Assessing the reproductive physiology via skin–blubber biopsy samples of recovering populations of marine mammals is critical for conservation and management. We used an extensive blubber archive and associated demographic data to assess the seasonal changes in three reproductive hormones for humpback whales on a southwest Pacific breeding ground. Abstract The field of marine mammal conservation has dramatically benefited from the rapid advancement of methods to assess the reproductive physiology of individuals and populations from steroid hormones isolated from minimally invasive skin–blubber biopsy samples. Historically, this vital information was only available from complete anatomical and physiological investigations of samples collected during commercial or indigenous whaling. Humpback whales (Megaptera novaeangliae) are a migratory, cosmopolitan species that reproduce in warm, low-latitude breeding grounds. New Caledonia is seasonally visited by a small breeding sub-stock of humpback whales, forming part of the endangered Oceania subpopulation. To better understand the demographic and seasonal patterns of reproductive physiology in humpback whales, we quantified baseline measurements of reproductive hormones (progesterone—P4, testosterone—T and 17β-estradiol—E2) using an extensive archive of skin–blubber biopsy samples collected from female humpback whales in New Caledonia waters between 2016 and 2019 (n = 194). We observed significant differences in the P4, T and E2 concentrations across different demographic groups of female humpback whales, and we described some of the first evidence of the endocrine patterns of estrous in live free-ranging baleen whales. This study is fundamental in its methodological approach to a wild species that has a global distribution, with seasonally distinct life histories. This information will assist in monitoring, managing and conserving this population as global ecological changes continue to occur unhindered.
Diel spatio-temporal patterns of humpback whale singing on a high-density breeding ground
Humpback whale song chorusing dominates the marine soundscape in Hawai‘i during winter months, yet little is known about spatio-temporal habitat use patterns of singers. We analysed passive acoustic monitoring data from five sites off Maui and found that ambient noise levels associated with song chorusing decreased during daytime hours nearshore but increased offshore. To resolve whether these changes reflect a diel offshore–onshore movement or a temporal difference in singing activity, data from 71 concurrently conducted land-based theodolite surveys were analysed. Non-calf pods ( n = 3082), presumably including the majority of singers, were found further offshore with increasing time of the day. Separately, we acoustically localized 217 nearshore singers using vector-sensors. During the day, distances to shore and minimum distances among singers increased, and singers switched more between being stationary and singing while travelling. Together, these findings suggest that the observed diel trends in humpback whale chorusing off Maui represent a pattern of active onshore–offshore movement of singers. We hypothesize that this may result from singers attempting to reduce intraspecific acoustic masking when densities are high nearshore and avoidance of a loud, non-humpback, biological evening chorus offshore, creating a dynamic of movement of singers aimed at increasing the efficiency of their acoustic display.
Disentangling the relative roles of climate and land cover change in driving the long-term population trends of European migratory birds
Aim Global declines in the populations of migratory species have been attributed largely to climate change and anthropogenic habitat change. However, the relative contribution of these factors on species’ breeding and non‐breeding ranges is unclear. Here, we present the first large‐scale assessment of the relative importance of climatic conditions and land cover on both the breeding and non‐breeding grounds in driving the long‐term population trends of migratory species. Location Europe and Africa. Methods We use data on the long‐term population trends of 61 short‐ and 39 long‐distance migratory species of European breeding birds. We analyse these population trends in relation to changes in climate and land cover across species’ breeding and non‐breeding ranges over a 36‐year period, along with species’ migratory behaviour. Results The population trends of European migratory birds appear to be more closely related to changes in climate than changes in land cover on their breeding grounds, but the converse is true on their non‐breeding grounds. While improvements in climate suitability across the breeding ranges of short‐distance migrants led to increasing population trends, the same was not true for long‐distance migrants. The combined effects of changes in climate and land cover account for approximately 40% of the variation in migratory species’ population trends, suggesting that factors other than climate and land cover as we have measured them, such as habitat quality, also affect the population trends of migrant birds. Main Conclusions Over recent decades, population trends of most migrant species are most strongly related to climatic conditions on the breeding grounds but land cover change on the non‐breeding grounds. This suggests that management to stem the declines of migrant birds requires an integrated approach that considers all processes affecting migrant birds across their dynamic distributions throughout the year.
The effect of climate change on the duration of avian breeding seasons: a meta-analysis
Many bird species are advancing the timing of their egg-laying in response to a warming climate. Little is known, however, of whether this advancement affects the respective length of the breeding seasons. A meta-analysis of 65 long-term studies of 54 species from the Northern Hemisphere has revealed that within the last 45 years an average population has lengthened the season by 1.4 days per decade, which was independent from changes in mean laying dates. Multi-brooded birds have prolonged their seasons by 4 days per decade, while single-brooded have shortened by 2 days. Changes in season lengths covaried with local climate changes: warming was correlated with prolonged seasons in multi-brooded species, but not in single-brooders. This might be a result of higher ecological flexibility of multi-brooded birds, whereas single brooders may have problems with synchronizing their reproduction with the peak of food resources. Sedentary species and short-distance migrants prolonged their breeding seasons more than long-distance migrants, which probably cannot track conditions at their breeding grounds. We conclude that as long as climate warming continues without major changes in ecological conditions, multi-brooded or sedentary species will probably increase their reproductive output, while the opposite effect may occur in single-brooded or migratory birds.
Early arrival at breeding grounds: Causes, costs and a trade-off with overwintering latitude
1. Early arrival at breeding grounds is of prime importance for migrating birds as it is known to enhance breeding success. Adults, males and higher quality individuals typically arrive earlier, and across years, early arrival has been linked to warmer spring temperatures. However, the mechanisms and potential costs of early arrival are not well understood. 2. To deepen the understanding of arrival date differences between individuals and years, we studied them in light of the preceding spring migration behaviour and atmospheric conditions en route. 3. GPS and body acceleration (ACC) data were obtained for 35 adult white storks (Ciconia ciconia) over five years (2012-2016). ACC records were translated to energy expenditure estimates (overall dynamic body acceleration; ODBA) and to behavioural modes, and GPS fixes were coupled with environmental parameters. 4. At the interindividual level (within years), early arrival was attributed primarily to departing earlier for migration and from more northern wintering sites (closer to breeding grounds), rather than to migration speed. In fact, early-departing birds flew slower, experienced weaker thermal uplifts and expended more energy during flight, but still arrived earlier, emphasizing the cost and the significance of early departure. Individuals that wintered further south arrived later at the breeding grounds but did not produce fewer fledglings, presumably due to positive carryover effects of advantageous wintering conditions (increased precipitation, vegetation productivity and daylight time). Therefore, early arrival increased breeding success only after controlling for wintering latitude. Males arrived slightly ahead of females. Between years, late arrival was linked to colder temperatures en route through two different mechanisms: stronger headwinds causing slower migration and lower thermal uplifts resulting in longer stopovers. 5. This study showed that distinct migratory properties underlie arrival time variation within and between years. It highlighted (a) an overlooked cost of early arrival induced by unfavourable atmospheric conditions during migration, (b) an important fitness trade-off in storks between arrival date and wintering habitat quality and (c) mechanistic explanations for the negative temperature–arrival date correlation in soaring birds. Such understanding of arrival time can facilitate forecasting migrating species responses to climate changes.
Six pelagic seabird species of the North Atlantic engage in a fly-and-forage strategy during their migratory movements
Bird migration is commonly defined as a seasonal movement between breeding and non-breeding grounds. It generally involves relatively straight and directed large-scale movements, with a latitudinal change, and specific daily activity patterns comprising less or no foraging and more traveling time. Our main objective was to describe how this general definition applies to seabirds. We investigated migration characteristics of six pelagic seabird species (northern fulmar, common guillemot, Brünnich’s guillemot, little auk, Atlantic puffin, black-legged kittiwake). We used an extensive geolocator positional and activity dataset from 29 colonies in the North-East Atlantic and across several years (2008-2019). We used a novel method to identify active migration periods based on segmentation of time series of track characteristics (latitude, longitude, net-squared displacement). Additionally, we used the wet/dry data of geolocators to infer bird activity. We found that the six species had, on average, three to four migration periods and two to three distinct stationary areas during the non-breeding season. On average, seabirds spent the winter at lower latitudes than their breeding colonies and followed specific migration routes rather than non-directionally dispersing from their colonies. Differences in daily activity patterns were small between migratory and stationary periods, suggesting that all species continued to forage and rest while migrating, engaging in a “fly-and-forage” migratory strategy. We thereby demonstrate the importance of habitats visited during seabird migrations as those that are not just flown over, but which may be important for re-fuelling.
Migratory birds with delayed spring departure migrate faster but pay the costs
Migratory birds that experience poor overwintering conditions are often late to arrive at the breeding grounds, which is known to depress individual fitness. Despite the importance of this carryover effect, few studies have investigated how individuals can modify migratory behaviors en route to reduce delays on arrival and whether accelerating migration incurs survival costs. To examine this, we used Motus Wildlife Tracking System to track individual American redstarts (Setophaga ruticilla) as they migrated from wintering grounds in Southwest Jamaica through Florida en route to their breeding areas. We leveraged long-term data on spring departure timing and breeding latitude to quantify the relative departure dates (early vs. delayed) of tagged individuals, which we then related to individual migration rates and apparent annual survival. Compared to those initiating migration earlier, individuals that departed relatively late (10-day delay) migrated at a 43% faster rate, which decreased their annual survival by 6.3%. Our results are consistent with the hypothesis that spring migrants use speed to compensate for departure delays despite incurring survival costs. This compensatory behavior may potentially underly differential survival during spring migration and may be particularly widespread across short-lived migratory birds generally considered time-constrained.
Linking events throughout the annual cycle in a migratory bird—non-breeding period buffers accumulation of carry-over effects
Annual cycles of animals consist of distinct life history phases linked in a unified sequence, and processes taking place in one season can influence an individual's performance in subsequent seasons via carry-over effects. Here, using a long-distance migratory bird, the collared flycatcher Ficedula albicollis, we link events throughout the annual cycle by integrating breeding data, individual-based tracking, and stable-carbon isotopes to unravel the connections between different annual phases. To disentangle true carry-over effects from an individuals' intrinsic quality, we experimentally manipulated the brood size of geolocator-tracked males prior to tracking. We did not find unambiguous differences in annual schedules between individuals of reduced and increased broods; however, in the following spring, the latter crossed the Sahara and arrived at the breeding grounds earlier. Individuals with higher absolute parental investment delayed their autumn migration, had shorter non-breeding residency period but advanced spring migration compared to individuals with lower breeding effort. Neither the local nonbreeding conditions (as inferred from δ¹³C values) nor the previous breeding effort was linked to the timing of the following breeding period. Furthermore, while on migration, collared flycatchers showed a pronounced \"domino effect\" but it did not carry over across different migration seasons. Thus, the non-breeding period buffered further accumulation of carry-over effects from the previous breeding season and autumn migration. Our results demonstrate tight links between spatially and temporally distinct phases of the annual cycles of migrants which can have significant implications for population dynamics.