Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
18,876
result(s) for
"Breeding seasons"
Sort by:
Climate change and functional traits affect population dynamics of a long-lived seabird
by
Woods Hole Oceanographic Institution (WHOI)
,
Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)
,
Jenouvrier, Stéphanie
in
Adults
,
Aquatic birds
,
Aquatic ecosystems
2018
1.Recent studies unravelled the effect of climate changes on populations through their impact on functional traits and demographic rates in terrestrial and freshwater ecosystems, but such understanding in marine ecosystems remains incomplete.2.Here, we evaluate the impact of the combined effects of climate and functional traits on population dynamics of a long-l ived migratory seabird breeding in the southern ocean: the black- browed albatross (Thalassarche melanophris, BBA). We address the following prospective question: “Of all the changes in the climate and functional traits, which would produce the biggest impact on the BBA population growth rate?”3.We develop a structured matrix population model that includes the effect of cli-mate and functional traits on the complete BBA life cycle. A detailed sensitivity analysis is conducted to understand the main pathway by which climate and func-tional trait changes affect the population growth rate.4.The population growth rate of BBA is driven by the combined effects of climate over various seasons and multiple functional traits with carry- over effects across seasons on demographic processes. Changes in sea surface temperature (SST) during late winter cause the biggest changes in the population growth rate, through their effect on juvenile survival. Adults appeared to respond to changes in winter climate conditions by adapting their migratory schedule rather than by modifying their at- sea foraging activity. However, the sensitivity of the population growth rate to SST affecting BBA migratory schedule is small. BBA foraging activ-ity during the pre- breeding period has the biggest impact on population growth rate among functional traits. Finally, changes in SST during the breeding season have little effect on the population growth rate.5.These results highlight the importance of early life histories and carry- over ef-fects of climate and functional traits on demographic rates across multiple sea-sons in population response to climate change. Robust conclusions about the roles of various phases of the life cycle and functional traits in population response to climate change rely on an understanding of the relationships of traits to demo-graphic rates across the complete life cycle.
Journal Article
Metabolomic profile of dromedary camel follicular fluid during the breeding and non-breeding seasons
by
Soliman, Seham Samir
,
El-Sanea, Amro M.
,
Abdoon, Ahmed Sabry S.
in
631/1647
,
631/208
,
631/443
2025
Understanding the metabolic profile within the follicular microenvironment is crucial for optimizing reproductive efficiency in camels. In this study, we examined the metabolomic profile of camel follicular fluid (FF) during the breeding (
n
= 10) and non-breeding seasons (
n
= 10). Gas chromatography-mass spectrometry (GC-MS) was utilized to describe the metabolites present in follicular fluid samples. The results found considerable differences in the metabolomics profiles between the breeding and non-breeding seasons. Hexadecenoic acid, galactose and glucose levels were significantly (
P
< 0.05) higher in camel FF during the breeding season, while 9-octadecenamide, oleonitrile, glycine, octadecanamide, cholesterol, and propanoic acid were higher (
P
< 0.05) in FF during the non-breeding season. Multivariante analyses pointed to those 9 metabolites, and univariate analysis showed hexadecenoic acid, galactose, glucose, and oleanitril were the most significant ones in camel follicular fluid collected during both breeding and non-breeding seasons. The univariate and multivariate analyses showed an increase in the levels of hexadecanoic acid, galactose, glucose, and a depletion in the level of oleanitrile in the breeding season compared to the non-breeding season. The ROC curve and statistical analysis showed that hexadecanoic acid, galactose, and oleanitril with AUC = 1 were promising to be seasonal biomarkers of fertility in female camels. In conclusion, the metabolomic analysis of camel FF reveals distinct changes in metabolite levels between breeding and non-breeding seasons, reflecting adaptive metabolic responses to support reproductive processes. These results offer valuable insights into the reproductive physiology of camels and offer practical implications for potential biomarkers and assessing the reproductive status in camels, which can be utilized in reproductive management and conservation efforts in these valuable animal species.
Journal Article
Seasonal survival estimation for a long-distance migratory bird and the influence of winter precipitation
2017
Conservation of migratory animals requires information about seasonal survival rates. Identifying factors that limit populations, and the portions of the annual cycle in which they occur, are critical for recognizing and reducing potential threats. However, such data are lacking for virtually all migratory taxa. We investigated patterns and environmental correlates of annual, oversummer, overwinter, and migratory survival for adult male Kirtland’s warblers (Setophaga kirtlandii), an endangered, long-distance migratory songbird. We used Cormack–Jolly–Seber models to analyze two mark–recapture datasets: 2006–2011 on Michigan breeding grounds, and 2003–2010 on Bahamian wintering grounds. The mean annual survival probability was 0.58 ± 0.12 SE. Monthly survival probabilities during the summer and winter stationary periods were relatively high (0.963 ± 0.005 SE and 0.977 ± 0.002 SE, respectively). Monthly survival probability during migratory periods was substantially lower (0.879 ± 0.05 SE), accounting for ~ 44 % of all annual mortality. March rainfall in the Bahamas was the best-supported predictor of annual survival probability and was positively correlated with apparent annual survival in the subsequent year, suggesting that the effects of winter precipitation carried over to influence survival probability of individuals in later seasons. Projection modeling revealed that a decrease in Bahamas March rainfall > 12.4 % from its current mean could result in negative population growth in this species. Collectively, our results suggest that increased drought during the non-breeding season, which is predicted to occur under multiple climate change scenarios, could have important consequences on the annual survival and population growth rate of Kirtland’s warbler and other Neotropical–Nearctic migratory bird species.
Journal Article
The effect of climate change on the duration of avian breeding seasons: a meta-analysis
2017
Many bird species are advancing the timing of their egg-laying in response to a warming climate. Little is known, however, of whether this advancement affects the respective length of the breeding seasons. A meta-analysis of 65 long-term studies of 54 species from the Northern Hemisphere has revealed that within the last 45 years an average population has lengthened the season by 1.4 days per decade, which was independent from changes in mean laying dates. Multi-brooded birds have prolonged their seasons by 4 days per decade, while single-brooded have shortened by 2 days. Changes in season lengths covaried with local climate changes: warming was correlated with prolonged seasons in multi-brooded species, but not in single-brooders. This might be a result of higher ecological flexibility of multi-brooded birds, whereas single brooders may have problems with synchronizing their reproduction with the peak of food resources. Sedentary species and short-distance migrants prolonged their breeding seasons more than long-distance migrants, which probably cannot track conditions at their breeding grounds. We conclude that as long as climate warming continues without major changes in ecological conditions, multi-brooded or sedentary species will probably increase their reproductive output, while the opposite effect may occur in single-brooded or migratory birds.
Journal Article
Drivers of climate change impacts on bird communities
by
Martay, Blaise
,
Eglington, Sarah M.
,
Pearce-Higgins, James W.
in
Animal Migration
,
Animals
,
Associated species
2015
1. Climate change is reported to have caused widespread changes to species' populations and ecological communities. Warming has been associated with population declines in long-distance migrants and habitat specialists, and increases in southerly distributed species. However, the specific climatic drivers behind these changes remain undescribed. 2. We analysed annual fluctuations in the abundance of 59 breeding bird species in England over 45 years to test the effect of monthly temperature and precipitation means upon population trends. 3. Strong positive correlations between population growth and both winter and breeding season temperature were identified for resident and short-distance migrants. Lagged correlations between population growth and summer temperature and precipitation identified for the first time a widespread negative impact of hot, dry summer weather. Resident populations appeared to increase following wet autumns. Populations of long-distance migrants were negatively affected by May temperature, consistent with a potential negative effect of phenological mismatch upon breeding success. There was evidence for some nonlinear relationships between monthly weather variables and population growth. 4. Habitat specialists and cold-associated species showed consistently more negative effects of higher temperatures than habitat generalists and southerly distributed species associated with warm temperatures. Results suggest that previously reported changes in community composition represent the accumulated effects of spring and summer warming. 5. Long-term population trends were more significantly correlated with species' sensitivity to temperature than precipitation, suggesting that warming has had a greater impact on population trends than changes in precipitation. Months where there had been the greatest warming were the most influential drivers of long-term change. There was also evidence that species with the greatest sensitivity to extremes of precipitation have tended to decline. 6. Our results provide novel insights about the impact of climate change on bird communities. Significant lagged effects highlight the potential for altered species' interactions to drive observed climate change impacts, although some community changes may have been driven by more immediate responses to warming. In England, resident and short-distance migrant populations have increased in response to climate change, but potentially at the expense of long-distance migrants, habitat specialists and cold-associated species.
Journal Article
Negative impact of traffic noise on avian reproductive success
by
Halfwerk, Wouter
,
Slabbekoorn, Hans
,
C(Kate). M. Lessells
in
Acoustic noise
,
Animal behavior
,
Animal breeding
2011
1. Traffic affects large areas of natural habitat worldwide. As a result, the acoustic signals used by birds and other animals are increasingly masked by traffic noise. Masking of signals important to territory defence and mate attraction may have a negative impact on reproductive success. Depending on the overlap in space, time and frequency between noise and vocalizations, such impact may ultimately exclude species from suitable breeding habitat. However a direct impact of traffic noise on reproductive success has not previously been reported. 2. We monitored traffic noise and avian vocal activity during the breeding season alongside a busy Dutch motorway. We measured variation in space, time and spectrum of noise and tested for negative effects on avian reproductive success using long-term breeding data on great tits Parus major. 3. Noise levels decreased with distance from the motorway, but we also found substantial spatial variation independent of distance. Noise also varied temporally with March being noisier than April, and the daytime being noisier than night-time. Furthermore, weekdays were clearly noisier than weekends. Importantly, traffic noise overlapped in time as well as acoustic frequency with avian vocalization behaviour over a large area. 4. Traffic noise had a negative effect on reproductive success with females laying smaller clutches in noisier areas. Variation in traffic noise in the frequency band that overlaps most with the lower frequency part of great tit song best explained the observed variation. 5. Additionally, noise levels recorded in April had a negative effect on the number of fledglings, independent of clutch size, and explained the observed variation better than noise levels recorded in March. 6. Synthesis and applications. We found that breeding under noisy conditions can carry a cost, even for species common in urban areas. Such costs should be taken into account when protecting threatened species, and we argue that knowledge of the spatial, temporal and spectral overlap between noise and species-specific acoustic behaviour will be important for effective noise management. We provide some cost-effective mitigation measures such as traffic speed reduction or closing of roads during the breeding season.
Journal Article
Differential winter and breeding range shifts
by
Manne, Lisa L.
,
Curley, Shannon R.
,
Veit, Richard R.
in
Animal breeding
,
BIODIVERSITY RESEARCH
,
Bird migration
2020
Aim For many migratory avian species, winter and breeding habitats occur at geographically distinct locations. Disparate magnitudes and direction of shifts in wintering and breeding locations could lead to altered migration distances. We investigated how shifts in the centre of abundance (COA) of winter and breeding ranges have changed for 77 species of short‐distance migratory birds. We addressed whether species tracked their historical average temperature and precipitation conditions at their winter and breeding COA, using data from 1990 to 2015. Location North America. Methods We calculated the COA for winter and breeding ranges from the National Audubon Society's Christmas Bird Count and the North American Breeding Bird Survey. We regressed the annual change in distance (km) between the two annual COAs of each species as a proxy for change in migration distance. We constructed a series of generalized linear mixed models (GLMMs) to evaluate changes in average temperature and precipitation at the wintering and breeding COAs. Results Winter shifts in COA were predominantly northward. For most species, average temperature and precipitation that species experienced had not changed. Breeding shifts in COA varied in direction. For breeding season COAs, average temperature warmed, but average precipitation had not changed. Thirty‐one species significantly decreased their migration distances, mainly driven by northward shifts in the winter range. Ten species increased their migration distances. Main conclusions Winter and breeding range shifts in COA have not occurred at the same magnitude and direction and have therefore impacted migration distance. Our results suggest that wintering and breeding range shifts occur independently and under different climate pressures.
Journal Article
Linking events throughout the annual cycle in a migratory bird—non-breeding period buffers accumulation of carry-over effects
by
Voigt, Christian C.
,
Adamík, Peter
,
Král, Miroslav
in
Accumulation
,
Animal behavior
,
Animal breeding
2018
Annual cycles of animals consist of distinct life history phases linked in a unified sequence, and processes taking place in one season can influence an individual's performance in subsequent seasons via carry-over effects. Here, using a long-distance migratory bird, the collared flycatcher Ficedula albicollis, we link events throughout the annual cycle by integrating breeding data, individual-based tracking, and stable-carbon isotopes to unravel the connections between different annual phases. To disentangle true carry-over effects from an individuals' intrinsic quality, we experimentally manipulated the brood size of geolocator-tracked males prior to tracking. We did not find unambiguous differences in annual schedules between individuals of reduced and increased broods; however, in the following spring, the latter crossed the Sahara and arrived at the breeding grounds earlier. Individuals with higher absolute parental investment delayed their autumn migration, had shorter non-breeding residency period but advanced spring migration compared to individuals with lower breeding effort. Neither the local nonbreeding conditions (as inferred from δ¹³C values) nor the previous breeding effort was linked to the timing of the following breeding period. Furthermore, while on migration, collared flycatchers showed a pronounced \"domino effect\" but it did not carry over across different migration seasons. Thus, the non-breeding period buffered further accumulation of carry-over effects from the previous breeding season and autumn migration. Our results demonstrate tight links between spatially and temporally distinct phases of the annual cycles of migrants which can have significant implications for population dynamics.
Journal Article
Changes in breeding phenology and population size of birds
by
Griffith, Simon
,
Dunn, Peter O
,
Møller, Anders P
in
Animal and plant ecology
,
Animal ecology
,
Animal Migration
2014
Although the phenology of numerous organisms has advanced significantly in response to recent climate change, the life‐history and population consequences of earlier reproduction remain poorly understood. We analysed extensive data on temporal change in laying date and clutch size of birds from Europe and North America to test whether these changes were related to recent trends in population size. Across studies, laying date advanced significantly, while clutch size did not change. However, within populations, changes in laying date and clutch size were positively correlated, implying that species which advanced their laying date the most were also those that increased their clutch size the most. Greater advances in laying date were associated with species that had multiple broods per season, lived in nonagricultural habitats and were herbivorous or predatory. The duration of the breeding season increased for multibrooded species and decreased for single‐brooded species. Changes in laying date and clutch size were not related to changes in population size (for resident or migratory species). This suggests that, across a wide variety of species, mismatches in the timing of egg laying or numbers of offspring have had relatively little influence on population size compared with other aspects of phenology and life history.
Journal Article
Recent advances in understanding migration systems of New World land birds
by
Gauthreaux, Sidney A.
,
Nol, Erica
,
Holmes, Richard T.
in
Animal and plant ecology
,
animal ecology
,
Animal migration behavior
2010
Our understanding of migratory birds' year-round ecology and evolution remains patchy despite recent fundamental advances. Periodic reviews focus future research and inform conservation and management; here, we take advantage of our combined experiences working on Western Hemisphere avian migration systems to highlight recent lessons and critical gaps in knowledge. Among topics discussed are: (1) The pipeline from pure to applied researchers leaves room for improvement. (2) Population limitation and regulation includes both seasonal and between-season interactions. (3) The study of movements of small-bodied species remains a major research frontier. (4) We must increase our understanding of population connectivity. (5) With few exceptions, population regulation has barely been investigated. (6) We have increasingly integrated landscape configuration of habitats, large-scale habitat disturbances, and habitat quality impacts into models of seasonal and overall demographic success. (7) The post-breeding season (late summer for latitudinal migrants) is increasingly appreciated for its impacts on demography. (8) We recognize the diverse ways that avian brood parasites, nest predators, and food availability affect demography. (9) Source–sink and meta-population models help us understand migratory avian distributions among fragmented habitats. (10) Advances in modeling have improved estimates of annual survival and fecundity, but for few species. (11) Populations can be limited by ecological conditions in winter, but habitat needs are poorly known for most species at this time. (12) Migration tends to occupy broad spatial fronts that may change seasonally or when migrants cross major barriers. (13) En route conditions can limit migrant populations; linking migration habitat quality indicators to fitness or population consequences presents a major challenge. (14) A variety of intra-tropical Neotropical migration patterns are recognizable, but almost nothing is known about these systems beyond descriptions of a few typical species' movements. (15) Global climate change scenarios predict range and phenology shifts of Neotropical migrant bird populations that must be considered in conservation plans. Future studies will depend on new technologies and the integration of modeling with sophisticated, large-spatial-scale measurement and parameter estimation; whether the pace of research and management involving migratory birds can match the growth of environmental threats remains to be seen.
Journal Article