Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
87 result(s) for "Bryopsida - enzymology"
Sort by:
Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2
Plant response to drought and hyperosmosis is mediated by the phytohormone abscisic acid (ABA), a sesquiterpene compound widely distributed in various embryophyte groups. Exogenous ABA as well as hyperosmosis activates the sucrose nonfermenting 1 (SNF1)-related protein kinase2 (SnRK2), which plays a central role in cellular responses against drought and dehydration, although the details of the activation mechanism are not understood. Analysis of a mutant of the mossPhyscomitrella patenswith reduced ABA sensitivity and reduced hyperosmosis tolerance revealed that a protein kinase designated “ARK” (for “ABA and abiotic stress-responsive Raf-like kinase”) plays an essential role in the activation of SnRK2. ARK encoded by a single gene inP. patensbelongs to the family of group B3 Raf-like MAP kinase kinase kinases (B3-MAPKKKs) mediating ethylene, disease resistance, and salt and sugar responses in angiosperms. Our findings indicate that ARK, as a novel regulatory component integrating ABA and hyperosmosis signals, represents the ancestral B3-MAPKKKs, which multiplied, diversified, and came to have specific functions in angiosperms.
Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics
In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD+- or NADP+-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species—including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies.
Cytokinin oxidase PpCKX1 plays regulatory roles in development and enhances dehydration and salt tolerance in Physcomitrella patens
Key message PpCKX1 localizes to vacuoles and is dominantly expressed in the stem cells. PpCKX1 regulates developmental changes with increased growth of the rhizoid and enhances dehydration and salt tolerance. Cytokinins (CKs) are plant hormones that regulate plant development as well as many physiological processes, such as cell division, leaf senescence, control of shoot/root ratio, and reproductive competence. Cytokinin oxidases/dehydrogenases (CKXs) control CK concentrations by degradation, and thereby influence plant growth and development. In the moss Physcomitrella patens , an evolutionarily early divergent plant, we identified six putative CKX s that, by phylogenetic analysis, form a monophyletic clade. We also observed that ProPpCKX1:GUS is expressed specifically in the stem cells and surrounding cells and that CKX1 localizes to vacuoles, as indicated by Pro35S:PpCKX1-smGFP. Under normal growth conditions, overexpression of PpCKX1 caused many phenotypic changes at different developmental stages, and we suspected that increased growth of the rhizoid could affect those changes. In addition, we present evidence that the PpCKX1 -overexpressor plants show enhanced dehydration and salt stress tolerance. Taken together, we suggest that PpCKX1 plays regulatory roles in development and adaptation to abiotic stresses in this evolutionarily early land plant species.
Group A PP2Cs evolved in land plants as key regulators of intrinsic desiccation tolerance
Vegetative desiccation tolerance is common in bryophytes, although this character has been lost in most vascular plants. The moss Physcomitrella patens survives complete desiccation if treated with abscisic acid (ABA). Group A protein phosphatases type 2C (PP2C) are negative regulators of abscisic acid signalling. Here we show that the elimination of Group A PP2C is sufficient to ensure P. patens survival to full desiccation, without ABA treatment, although its growth is severely hindered. Microarray analysis shows that the Group A PP2C-regulated genes exclusively overlap with genes exhibiting a high level of ABA induction. Group A PP2C disruption weakly affects ABA-activated kinase activity, indicating Group A PP2C action downstream of these kinases in the moss. We propose that Group A PP2C emerged in land plants to repress desiccation tolerance mechanisms, possibly facilitating plants propagation on land, whereas ABA releases the intrinsic desiccation tolerance from Group A PP2C regulation. Abscisic acid plays an essential role in the induction of vegetative desiccation tolerance in bryophytes. Here the authors show that elimination of protein phosphatases 2C is sufficient for the moss Physcomitrella patens to survive desiccation without the assistance of abscisic acid.
Isopentenyltransferase-1 (IPT1) knockout in Physcomitrella together with phylogenetic analyses of IPTs provide insights into evolution of plant cytokinin biosynthesis
Is there more than one pathway for cytokinin biosynthesis in Physcomitrella? Despite the apparent absence of adenylate-isopentenyltransferases, characterization of ipt1 knockout mutants points towards a second, tRNA-independent cytokinin biosynthesis pathway.
Functional Divergence of the Glutathione S-Transferase Supergene Family in Physcomitrella patens Reveals Complex Patterns of Large Gene Family Evolution in Land Plants
Plant glutathione S-transferases (GSTs) are multifunctional proteins encoded by a large gene family that play major roles in the detoxification of xenobiotics and oxidative stress metabolism. To date, studies on the GST gene family have focused mainly on vascular plants (particularly agricultural plants). In contrast, little information is available on the molecular characteristics of this large gene family in nonvascular plants. In addition, the evolutionary patterns of this family in land plants remain unclear. In this study, we identified 37 GST genes from the whole genome of the moss Physcomitrella patens, a nonvascular representative early land plants. The 37 P. patens GSTs were divided into 10 classes, including two new classes (hemeiythrin and iota). However, no tau GSTs were identified, which represent the largest class among vascular plants. P. patens GST gene family members showed extensive functional divergence in their gene structures, gene expression responses to abiotic Stressors, enzymatic characteristics, and the subcellular locations of the encoded proteins. A joint phylogenetic analysis of GSTs from P. patens and other higher vascular plants showed that different class GSTs had distinct duplication patterns during the evolution of land plants. By examining multiple characteristics, this study revealed complex patterns of evolutionary divergence among the GST gene family in land plants.
The Antarctic moss 2-oxoglutarate/Fe(II)-dependent dioxygenases (Pn2-ODD2) enhanced the tolerance to drought and oxidative stress
Background Flavonoid biosynthesis pathway is generally thought unique to land plants and has assisted plants to adapt the terrestrial ecosystems. In this pathway, four 2-oxoglutarate/Fe(II)-dependent dioxygenases (2-ODDs), i.e., flavone synthase I (FNSI), flavanone-3-hydroxylase (F3H), flavonol synthase (FLS) and anthocyanin synthase/leucoanthocyanidin dioxygenase (ANS/LDOX), catalyze the hydroxylation and desaturation reactions. In bryophytes, the earliest land plant group, little is known about the biological functions of these enzymes. Results Here, we cloned a Pn2-ODD2 gene of flavonoid biosynthesis pathway from Antarctic moss Pohlia nutans , which was induced by exogenous NaCl, PEG and abscisic acid (ABA) treatment. Overexpression of Pn2-ODD2 increased the drought resistance in Physcomitrium patens and Arabidopsis thaliana during gametophyte growth and seed germination, respectively. Overexpressed- Pn2-ODD2 Arabidopsis also exhibited the enhanced tolerance to oxidative stress, with the downregulation of ROS generation gene and increased the total flavonoid content. Also, overexpression of Pn2-ODD2 decreased the ABA sensitivity in transgenic P. patens and Arabidopsis . Meanwhile, overexpression of Pn2-ODD2 resulted in an increase in both anthocyanins and flavonols in Arabidopsis , which was correlated with the up-regulated anthocyanin biosynthesis gene. Conclusions Taken together, Pn2-ODD2 conferred the resistance to drought and oxidative stress by regulating antioxidant defense system in plants.
Chloroplast FBPase and SBPase are thioredoxin-linked enzymes with similar architecture but different evolutionary histories
The Calvin-Benson cycle of carbon dioxide fixation in chloroplasts is controlled by light-dependent redox reactions that target specific enzymes. Of the regulatorymembers of the cycle, our knowledge of sedoheptulose-1,7-bisphosphatase (SBPase) is particularly scanty, despite growing evidence for its importance and link to plant productivity. To help fill this gap, we have purified, crystallized, and characterized the recombinant form of the enzyme together with the better studied fructose-1,6-bisphosphatase (FBPase), in both cases from the moss Physcomitrella patens (Pp). Overall, the moss enzymes resembled their counterparts from seed plants, including oligomeric organization-PpSBPase is a dimer, and PpFBPase is a tetramer. The two phosphatases showed striking structural homology to each other, differing primarily in their solvent-exposed surface areas in a manner accounting for their specificity for seven-carbon (sedoheptulose) and six-carbon (fructose) sugar bisphosphate substrates. The two enzymes had a similar redox potential for their regulatory redoxactive disulfides (-310 mV for PpSBPase vs. -290 mV for PpFBPase), requirement for Mg2+ and thioredoxin (TRX) specificity (TRX f > TRX m). Previously known to differ in the position and sequence of their regulatory cysteines, the enzymes unexpectedly showed unique evolutionary histories. The FBPase gene originated in bacteria in conjunction with the endosymbiotic event giving rise to mitochondria, whereas SBPase arose from an archaeal gene resident in the eukaryotic host. These findings raise the question of how enzymes with such different evolutionary origins achieved structural similarity and adapted to control by the same light-dependent photosynthetic mechanism-namely ferredoxin, ferredoxin-thioredoxin reductase, and thioredoxin.
CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella patens
The ability to address the CRISPR-Cas9 nuclease complex to any target DNA using customizable single-guide RNAs has now permitted genome engineering in many species. Here, we report its first successful use in a nonvascular plant, the moss Physcomitrella patens. Single-guide RNAs (sgRNAs) were designed to target an endogenous reporter gene, PpAPT, whose inactivation confers resistance to 2-fluoroadenine. Transformation of moss protoplasts with these sgRNAs and the Cas9 coding sequence from Streptococcus pyogenes triggered mutagenesis at the PpAPT target in about 2% of the regenerated plants. Mainly, deletions were observed, most of them resulting from alternative end-joining (alt-EJ)-driven repair. We further demonstrate that, in the presence of a donor DNA sharing sequence homology with the PpAPT gene, most transgene integration events occur by homology-driven repair (HDR) at the target locus but also that Cas9-induced double-strand breaks are repaired with almost equal frequencies by mutagenic illegitimate recombination. Finally, we establish that a significant fraction of HDR-mediated gene targeting events (30%) is still possible in the absence of PpRAD51 protein, indicating that CRISPR-induced HDR is only partially mediated by the classical homologous recombination pathway.
Acyl-CoA synthetases from Physcomitrella, rice and Arabidopsis
Sporopollenin is the major constituent of spore and pollen exines. In Arabidopsis, acyl-CoA synthetase 5 (ACOS5) is an essential enzyme for sporopollenin synthesis, and its orthologues are PpACOS6 from the moss Physcomitrella and OsACOS12 from monocot rice. However, knowledge regarding the evolutionary conservation and divergence of the ACOS gene in sporopollenin synthesis remains limited. In this study, we analysed the function and regulation of PpACOS6 and OsACOS12. A complementation test showed that OsACOS12 driven by the ACOS5 promoter could partially restore the male fertility of the acos5 mutant in Arabidopsis, while PpACOS6 did not rescue the acos5 phenotype. ACOS5, PpACOS6 and OsACOS12 all complemented the acyl-CoA synthetase-deficient yeast strain (YB525) phenotype, although they exhibited different substrate preferences. To understand the conservation of sporopollenin synthesis regulation, we constructed two constructs with ACOS5 driven by the OsACOS12 or PpACOS6 promoter. Both constructs could restore the fertility of acos5 plants. The MYB transcription factor MS188 from Arabidopsis directly regulates ACOS5. We found that MS188 could also bind the promoters of OsACOS12 and PpACOS6 and activate the genes driven by the promoters, suggesting that the transcriptional regulation of these genes was similar to that of ACOS5. These results show that the ACOS gene promoter region from Physcomitrella, rice and Arabidopsis has been functionally conserved during evolution, while the chain lengths of fatty acid-derived monomers of sporopollenin vary in different plant species.