Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Item Type
      Item Type
      Clear All
      Item Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Language
    • Place of Publication
    • Contributors
    • Location
2,919 result(s) for "Building materials Service life."
Sort by:
Life cycle assessment in the built environment
Life cycle assessment enables the identification of a broad range of potential environmental impacts occurring across the entire life of a product, from its design through to its eventual disposal or reuse. The need for life cycle assessment to inform environmental design within the built environment is critical, due to the complex range of materials and processes required to construct and manage our buildings and infrastructure systems. After outlining the framework for life cycle assessment, this book uses a range of case studies to demonstrate the innovative input-output-based hybrid approach for compiling a life cycle inventory. This approach enables a comprehensive analysis of a broad range of resource requirements and environmental outputs so that the potential environmental impacts of a building or infrastructure system can be ascertained. These case studies cover a range of elements that are part of the built environment, including a residential building, a commercial office building and a wind turbine, as well as individual building components such as a residential-scale photovoltaic system. Comprehensively introducing and demonstrating the uses and benefits of life cycle assessment for built environment projects, this book will show you how to assess the environmental performance of your clients' projects, to compare design options across their entire life and to identify opportunities for improving environmental performance.
Eco-Efficient Construction and Building Materials - Life Cycle Assessment (LCA), Eco-Labelling and Case Studies
This book reviews ways of assessing the environmental impact of construction and building materials. Part one discusses the application of life cycle assessment (LCA) methodology to building materials as well as eco-labeling. Part two includes case studies showing the application of LCA methodology to different types of building material, from cement and concrete to wood and adhesives used in building. Part three includes case studies applying LCA methodology to particular structures and components.
Maintenance architecture
Maintenance plays a crucial role in the production and endurance of architecture, yet architects for the most part treat maintenance with indifference. The discipline of architecture values the image of the new over the lived-in, the photogenic empty and stark building over a messy and labored one. But the fact is: homes need to be cleaned and buildings and cities need to be maintained, and architecture no matter its form cannot escape from such realities. In Maintenance Architecture, Hilary Sample offers an inventive examination of the architectural significance of maintenance through a series of short texts and images about specific buildings, materials, and projects. Although architects have seldom choose to represent maintenance -- imagining their work only from conception to realization -- artists have long explored subjects of endurance and permanence in iconic architecture. Sample explores a range of art projects -- by artists including Gordon Matta-Clark, Jeff Wall, and Mierle Laderman Ukeles -- to recast the problem of maintenance for architecture. How might architectural design and discourse change as a building cycle expands to include \"post-occupancy\"?Sample looks particularly at the private home, exhibition pavilion, and high-rise urban building, giving special attention to buildings constructed with novel and developing materials, technologies, and precise detailing in relation to endurance. These include Buckminster Fuller's Dymaxion House (1929), the Lever House (1952), the U.S. Steel Building (1971), and the O-14 (2010). She considers the iconography of skyscrapers; maintenance workforces, both public and private; labor-saving technology and devices; and contemporary architectural projects and preservation techniques that encompass the afterlife of buildings. A selection of artworks make the usually invisible aspects of maintenance visible, from Martha Rosler's Cleaning the Drapes to Inigo Manglano-Ovalle's The Kiss.
Sustainability-based decision support framework for choosing concrete mixture proportions
A framework is proposed, along with two objective indices, for the selection of concrete mixture proportions based on sustainability criteria. The indices combine energy demand and long-term strength as energy intensity, and carbon emissions and durability parameters as A-indices, which represent the apathy toward these essential features of sustainability. The decision support framework is demonstrated by considering a set of 30 concretes with different binders, including ordinary portland cement (OPC), fly ash, slag and limestone calcined clay cement (LC3). In addition to the experimental data on compressive strength, chloride diffusion and carbonation, life cycle assessment has been performed for the concretes considering typical situations in South India. The most sustainable of the concretes studied here, for service life limited by chloride ingress, are those with LC3, OPC replaced by 50% slag, and ternary blends with 20% each of slag and fly ash. In the case of applications where carbonation is critical, the appropriate concretes are those with OPC replaced by 15–30% slag or 15% fly ash, or with ternary blends having 20% slag and 20% Class F fly ash.
Accelerated climate ageing of building materials, components and structures in the laboratory
Building materials, components and structures have to fulfil many functional demands during the lifetime of a building. Therefore, it is important to require satisfactory durability of these materials, components and structures. In fact, one single material failure may jeopardize whole components as well as structures. Unfortunately, experience shows that building products too often do not satisfy the various requirements after a relatively short period of use, i.e. the expected service life is considerably shorter than foreseen. This results in increased and large costs due to increased maintenance, extensive replacements of the specific building products and any possible consequential building damages. In addition, health hazards with respect to both risk and consequence may also become an issue. To avoid this, the solution is to apply building products which have properly documented adequate and satisfactory long-term durability. That is, building products which have been subjected to long-term natural outdoor climate exposure or appropriate accelerated climate ageing in the laboratory. This study examines the main climate exposures and how these may be reproduced in the laboratory in various ways. Thus, crucial properties of building products and their durability towards climate strains may be investigated within a relatively short time frame compared with natural outdoor climate ageing. Examples of miscellaneous climate ageing laboratory apparatuses, ageing methods and building product properties to be tested before, during and after ageing are given. A calculation method for estimating acceleration factors is also discussed. Various ageing examples are shown and discussed. A special note is made towards accelerated climate ageing of new and advanced materials being developed. Hence, this study addresses durability and the versatile and powerful application of accelerated climate ageing which is an all too overlooked field within materials science and engineering.
Effect of Biochar Dosage and Fineness on the Mechanical Properties and Durability of Concrete
Biochar (BC), a byproduct of agricultural waste pyrolysis, shows potential as a sustainable substitute material for ordinary silicate cement (OPC) in concrete production, providing opportunities for environmental sustainability and resource conservation in the construction industry. However, the optimal biochar dosage and fineness for enhancing concrete performance are still unclear. This study investigated the impact of these two factors on the mechanical and durability properties of biochar concrete. Compressive and flexural strength, carbonation resistance, and chloride ion penetration resistance were evaluated by varying biochar dosages (0%, 1%, 3%, 5%, 10%) and fineness dimensions (44.70, 73.28, 750, 1020 μm), with the 0% dosage serving as the control group (CK). The results showed that the addition of 1–3 wt% of biochar could effectively reduce the rapid carbonation depth and chloride diffusion coefficient of concrete. The compressive and flexural strength of BC concrete initially increased and then decreased with the increase in biocarbon content, BC with a fineness of 73.28 μm having the most significant effect on the mechanical strength of concrete. At the dosage of 3 wt%, BC was found to promote the hydration degree of cement, improving the formation of cement hydration products. These findings provide valuable insights for the development of sustainable and high-performance cement-based materials with the appropriate use of biochar as an additive.
Durability and climate change: implications for service life prediction and the maintainability of buildings
Sustainable building practices are rooted in the need for reliable information on the long-term performance of building materials; specifically, the expected service-life of building materials, components, and assemblies. This need is ever more evident given the anticipated effects of climate change on the built environment and the many governmental initiatives world-wide focused on ensuring that structures are not only resilient at their inception but also, can maintain their resilience over the long-term. The Government of Canada has funded an initiative now being completed at the National Research Council of Canada’s (NRC) Construction Research Centre on “Climate Resilience of Buildings and Core Public infrastructure”. The outcomes from this work will help permit integrating climate resilience of buildings into guides and codes for practitioners of building and infrastructure design. In this paper, the impacts of climate change on buildings are discussed and a review of studies on the durability of building envelope materials and elements is provided in consideration of the expected effects of climate change on the longevity and resilience of such products over time. Projected changes in key climate variables affecting the durability of building materials is presented such that specifications for the selection of products given climate change effects can be offered. Implications in regard to the maintainability of buildings when considering the potential effects of climate change on the durability of buildings and its components is also discussed.