Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
7,438 result(s) for "Built Environment and Design"
Sort by:
Building a global alliance of biofoundries
Biofoundries provide an integrated infrastructure to enable the rapid design, construction, and testing of genetically reprogrammed organisms for biotechnology applications and research. Many biofoundries are being built and a Global Biofoundry Alliance has recently been established to coordinate activities worldwide.
AI is a viable alternative to high throughput screening: a 318-target study
High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery.
Feasible supply of steel and cement within a carbon budget is likely to fall short of expected global demand
The current decarbonization strategy for the steel and cement industries is inherently dependent on the build-out of infrastructure, including for CO 2 transport and storage, renewable electricity, and green hydrogen. However, the deployment of this infrastructure entails considerable uncertainty. Here we explore the global feasible supply of steel and cement within Paris-compliant carbon budgets, explicitly considering uncertainties in the deployment of infrastructure. Our scenario analysis reveals that despite substantial growth in recycling- and hydrogen-based production, the feasible steel supply will only meet 58–65% (interquartile range) of the expected baseline demand in 2050. Cement supply is even more uncertain due to limited mitigation options, meeting only 22–56% (interquartile range) of the expected baseline demand in 2050. These findings pose a two-fold challenge for decarbonizing the steel and cement industries: on the one hand, governments need to expand essential infrastructure rapidly; on the other hand, industries need to prepare for the risk of deployment failures, rather than solely waiting for large-scale infrastructure to emerge. Our feasible supply scenarios provide compelling evidence of the urgency of demand-side actions and establish benchmarks for the required level of resource efficiency. A new study explores the global feasible supply of steel and cement within Paris-compliant carbon budgets, explicitly considering uncertainties in the deployment of infrastructure and it shows that feasible supply may fall short of expected global demand.
A Survey of the Status and Challenges of Green Building Development in Various Countries
Since the energy crisis in the 1960s, crucial research and activities were spurred to improve energy efficiency and decrease environmental pollution. To deal with the various problems the construction industry are facing, the concept of green buildings (GBs) has been gradually shaped and put forward all over the world, and green building rating systems (GBRSs) have been developed. The concept of GBs covers a wide range of elements, and its definition is constantly updated as the construction industry develops. This paper compares the development of backgrounds and statuses of green building development in various countries. It also presents an overview of the green building development situation within these countries, summarizing two influences for GB development: one external and the other internal. External factors include GB development policy support, economic benefits, and certification schemes. Internal factors are the development and application of GB technology, the level of building management, and how users interact with the GB technology. Currently, 49 worldwide green building standards and application have been sorted out, including 18 standard expert appraisal systems. Moreover, it discusses the research results and lessons learned from green building projects in different countries and summarizes their achievements and challenges. To correctly understand and use green building technology, it is essential to improve the policy and incentive system, improve the professional quality and technical ability of employees and accredited consultants, constantly develop and update the evaluation system, strengthen technological innovation, and integrate design and management. This paper aims to draw a clear roadmap for national standard development, policy formulation, and construction design companies, provide solutions to remove the obstacles, and suggest research direction for future studies.
Label-free affinity screening, design and synthesis of inhibitors targeting the Mycobacterium tuberculosis L-alanine dehydrogenase
The ability of Mycobacterium tuberculosis ( Mtb ) to persist in its host may enable an evolutionary advantage for drug resistant variants to emerge. A potential strategy to prevent persistence and gain drug efficacy is to directly target the activity of enzymes that are crucial for persistence. We present a method for expedited discovery and structure-based design of lead compounds by targeting the hypoxia-associated enzyme L-alanine dehydrogenase (AlaDH). Biochemical and structural analyses of AlaDH confirmed binding of nucleoside derivatives and showed a site adjacent to the nucleoside binding pocket that can confer specificity to putative inhibitors. Using a combination of dye-ligand affinity chromatography, enzyme kinetics and protein crystallographic studies, we show the development and validation of drug prototypes. Crystal structures of AlaDH-inhibitor complexes with variations at the N6 position of the adenyl-moiety of the inhibitor provide insight into the molecular basis for the specificity of these compounds. We describe a drug-designing pipeline that aims to block Mtb to proliferate upon re-oxygenation by specifically blocking NAD accessibility to AlaDH. The collective approach to drug discovery was further evaluated through in silico analyses providing additional insight into an efficient drug development strategy that can be further assessed with the incorporation of in vivo studies.
Groundwater Quality of Some Parts of Coastal Bhola District, Bangladesh: Exceptional Evidence
The composition of groundwater governs the drinking and irrigation water suitability. A large part of the coastal region of Bangladesh is affected and is responsible for changing the composition of the groundwater. This research attempted to observe the groundwater quality of the Bhola Sadar and Char Fasson upazilas in coastal Bangladesh. Twenty-eight (28) water samples, 27 at depths of 260–430 m (850–1400 ft) and 1 from a crop field, were collected and analyzed. The quality of water samples was determined through the evaluation of odor, color, turbidity, electrical conductivity, pH, total dissolved solids, nitrate (NO3−), ammonium (NH4+), sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn) and arsenic (As) ions. An Atomic Absorption Spectrophotometer was used for heavy metal analysis. The outcomes were compared with the drinking water quality of Bangladesh and the World Health Organization. The results showed that the average values of nearly all of the parameters were underneath or within the standard level, representing that the groundwater was appropriate for drinking purposes. The water quality parameters were also compared with the irrigation water quality of Bangladesh and the Food and Agriculture Organization. It was found that the collected samples were also suitable for irrigation. To do this, the soluble sodium percentage, sodium adsorption ratio, magnesium adsorption ratio, Kelley’s ratio, and total hardness were calculated. The novelty of this research is that, despite being in a coastal district, the deep aquifer water of Bhola was appropriate for drinking and irrigation purposes.
Impacts of the COVID-19 Pandemic on Routines of Higher Education Institutions: A Global Perspective
The COVID-19 pandemic has caused severe disturbances in the work of hundreds of millions of people around the world. One of the groups affected is the academic staff at higher education institutions, whose original business model, i.e., presence teaching, suddenly changed to online learning. This has, in turn, exacerbated pre-existing problems such as shortage of time, busy schedules, and challenges to a work-life balance. Since academic staff plays a key role in respect of teaching and research, often acting as leaders in their fields, it is important to reflect on the influences of the lockdowns on their work routines. In order to address this research need, this paper reports on a study that examined the impacts of the lockdowns on the work of academic staff at universities. Using a bibliometric analysis and investigation of a set of case studies, the study sheds light on the difficulties encountered and the means deployed to address them. Our study did not identify a one-size-fits-all response to manage the manifold changes brought on HEIs by the COVID-19 pandemic. Selected arising priorities include creating a culture of educational resilience through a container of complementary measures.
Brand Equity of a Tourist Destination
In the current climate of severe competition among tourist destinations, the importance of brand equity in tourism marketing is increasing. This study looks at the impact of branding in relation to the largest group of inbound overseas tourists to South Korea, the Chinese. Data for the current study were obtained from a survey of tourists visiting Seoul from the Greater China region, including Mainland China, Hong Kong, Macao, Taiwan, and the Chinese living in Southeast Asia. The survey was conducted in popular sightseeing spots, four and five-star hotels in the Seoul Metropolitan Area, and the Incheon International Airport. The respondents were selected randomly, with effort expended to avoid any potential bias in the composition of the sample. Out of a total of 385 distributed questionnaires, 350 (China 191, Hong Kong 71, Taiwan 68, others 20) were selected as valid and finally used in the analysis. The results of this study suggest that price and word of mouth have beneficial effects on perceived quality, publicity, and brand awareness, and advertisement has beneficial effects on brand image. We also found that brand awareness and perceived quality have impacts on brand image, and brand image is related to brand loyalty. This is a pioneering study on the relationships between influencing factors, destination brand equity and its elements, and brand loyalty, with respect to Seoul, South Korea, as a tourism destination for tourists from China.
Seismic vulnerability assessment of residential buildings using logistic regression and geographic information system (GIS) in Pleret Sub District (Yogyakarta, Indonesia)
Background The Southeast of Yogyakarta City has had the heaviest damages to buildings in the 2006 of Yogyakarta Earthquake disaster. A moderate to strong earthquake of 6.3 Mw shook the 20 km southeast part of the Yogyakarta City early in the morning at 5:54 local time. On top of extensive damage in Yogyakarta and Central Java, more than 5700 people perished; 37,927 people were injured in the collapse of more than 240,396 residential buildings. Furthermore, the earthquake also affected the infrastructure and local economic activities. The total damages and losses because of the earthquake was 29.1 trillion rupiahs or equal to approximately 3.1 million US dollar. Two main factors that caused the severe damages were a dense population and the lack of seismic design of residential buildings. After reconstruction and rehabilitation, the area where the study was conducted grew into a densely populated area. This urbanistic change is feared to be potentially the lead to a great disaster if an earthquake occurs again. Thus, a comprehensive study about building vulnerability is absolutely needed in study area. Therefore, the main objective of this study has been the provision of a probabilistic model of seismic building vulnerability based on the damage data of the last big earthquake. By considering the relationship between building characteristics, site conditions, and the damage level based on probabilistic analysis, this study can offer a better understanding of earthquake damage estimation for residential building in Java. Results The main findings of this study were as follows: The most vulnerable building type is the reinforced masonry structure with clay tile roof, it is located between 8.1-10 km of the epicentre and it is built on young Merapi volcanic deposits. On the contrary, the safest building type is the houses which has characteristics of reinforced masonry structure, asbestos or zinc roof type, and being located in Semilir Formation. The results showed that the building damage probability provided a high accuracy of prediction about 75.81%. Conclusions The results explain the prediction of building vulnerability based on the building damaged of the Yogyakarta earthquake 2006. This study is suitable for preliminary study at the region scale. Thus, the site investigation still needs to be conducted for the future research to determine the safety and vulnerability of residential building.