Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
46
result(s) for
"Bulbo-Spinal Atrophy, X-Linked - genetics"
Sort by:
Kennedy’s disease (spinal and bulbar muscular atrophy): a clinically oriented review of a rare disease
2019
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy’s disease, is a rare, X-linked hereditary lower motor neuron disease, characterized by progressive muscular weakness. An expanded trinucleotide repeat (CAG > 37) in the androgen receptor gene (AR), encoding glutamine, is the mutation responsible for Kennedy’s disease. Toxicity of this mutant protein affects both motor neurons and muscles. In this review, we provide a comprehensive, clinically oriented overview of the current literature regarding Kennedy’s disease, highlighting gaps in our knowledge that remain to be addressed in further research. Kennedy’s disease mimics are also discussed, as are ongoing and recently completed therapeutic endeavours.
Journal Article
Side chain to main chain hydrogen bonds stabilize a polyglutamine helix in a transcription factor
2019
Polyglutamine (polyQ) tracts are regions of low sequence complexity frequently found in transcription factors. Tract length often correlates with transcriptional activity and expansion beyond specific thresholds in certain human proteins is the cause of polyQ disorders. To study the structural basis of the association between tract length, transcriptional activity and disease, we addressed how the conformation of the polyQ tract of the androgen receptor, associated with spinobulbar muscular atrophy (SBMA), depends on its length. Here we report that this sequence folds into a helical structure stabilized by unconventional hydrogen bonds between glutamine side chains and main chain carbonyl groups, and that its helicity directly correlates with tract length. These unusual hydrogen bonds are bifurcate with the conventional hydrogen bonds stabilizing α-helices. Our findings suggest a plausible rationale for the association between polyQ tract length and androgen receptor transcriptional activity and have implications for establishing the mechanistic basis of SBMA.
Polyglutamine (polyQ) tracts are low-complexity regions and their expansion is linked to certain neurodegenerative diseases. Here the authors combine experimental and computational approaches to find that the length of the androgen receptor polyQ tract correlates with its helicity and show that the polyQ helical structure is stabilized by hydrogen bonds between the Gln side chains and main chain carbonyl groups.
Journal Article
Deubiquitinase USP7 contributes to the pathogenicity of spinal and bulbar muscular atrophy
by
St.-Cyr, Sophie
,
Lieberman, Andrew P.
,
Gu, Wei
in
Alzheimer's disease
,
Androgen receptors
,
Androgens
2021
Polyglutamine (polyQ) diseases are devastating, slowly progressing neurodegenerative conditions caused by expansion of polyQ-encoding CAG repeats within the coding regions of distinct, unrelated genes. In spinal and bulbar muscular atrophy (SBMA), polyQ expansion within the androgen receptor (AR) causes progressive neuromuscular toxicity, the molecular basis of which is unclear. Using quantitative proteomics, we identified changes in the AR interactome caused by polyQ expansion. We found that the deubiquitinase USP7 preferentially interacts with polyQ-expanded AR and that lowering USP7 levels reduced mutant AR aggregation and cytotoxicity in cell models of SBMA. Moreover, USP7 knockdown suppressed disease phenotypes in SBMA and spinocerebellar ataxia type 3 (SCA3) fly models, and monoallelic knockout of Usp7 ameliorated several motor deficiencies in transgenic SBMA mice. USP7 overexpression resulted in reduced AR ubiquitination, indicating the direct action of USP7 on AR. Using quantitative proteomics, we identified the ubiquitinated lysine residues on mutant AR that are regulated by USP7. Finally, we found that USP7 also differentially interacts with mutant Huntingtin (HTT) protein in striatum and frontal cortex of a knockin mouse model of Huntington's disease. Taken together, our findings reveal a critical role for USP7 in the pathophysiology of SBMA and suggest a similar role in SCA3 and Huntington's disease.
Journal Article
Molecular Mechanisms and Therapeutics for SBMA/Kennedy's Disease
2019
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by a polyglutamine (polyQ) expansion in the androgen receptor (AR). Despite the fact that the monogenic cause of SBMA has been known for nearly 3 decades, there is no effective treatment for this disease, underscoring the complexity of the pathogenic mechanisms that lead to a loss of motor neurons and muscle in SBMA patients. In the current review, we provide an overview of the system-wide clinical features of SBMA, summarize the structure and function of the AR, discuss both gain-of-function and loss-of-function mechanisms of toxicity caused by polyQ-expanded AR, and describe the cell and animal models utilized in the study of SBMA. Additionally, we summarize previously conducted clinical trials which, despite being based on positive results from preclinical studies, proved to be largely ineffective in the treatment of SBMA; nonetheless, these studies provide important insights as researchers develop the next generation of therapies.
Journal Article
More than autophony: a case of Kennedy's disease presenting with autophony as an early clinical manifestation
2024
As autophony can be accompanied by several conditions, it is important to find co-morbidities. This paper reports a patient with Kennedy's disease (spinobulbar muscular atrophy, an X-linked, hereditary, lower motor neuron disease) having autophony as the first symptom.
A 62-year-old male presented to the otorhinolaryngology department with autophony that began 2 years previously and worsened after losing weight 3 months prior to presentation. Otoscopic examination demonstrated inward and outward movement of the tympanic membrane, synchronised with respiration. Although he had no other symptoms, facial twitching was found on physical examination. In the neurology department, lower motor neuron disease, with subtle weakness of the tongue, face and upper limbs, and gynaecomastia, were confirmed. He was diagnosed with Kennedy's disease based on genetic analysis.
Autophonia was presumed to be attributed to bulbofacial muscle weakness due to Kennedy's disease, and worsened by recent weight loss. Patients with autophony require a thorough history-taking and complete physical examination to assess the nasopharynx and the integrity of lower cranial function.
Journal Article
Src inhibition attenuates polyglutamine-mediated neuromuscular degeneration in spinal and bulbar muscular atrophy
2019
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by an expanded CAG repeat in the androgen receptor (AR) gene. Here, we perform a comprehensive analysis of signaling pathways in a mouse model of SBMA (AR-97Q mice) utilizing a phosphoprotein assay. We measure the levels of 17 phosphorylated proteins in spinal cord and skeletal muscle of AR-97Q mice at three stages. The level of phosphorylated Src (p-Src) is markedly increased in the spinal cords and skeletal muscles of AR-97Q mice prior to the onset. Intraperitoneal administration of a Src kinase inhibitor improves the behavioral and histopathological phenotypes of the transgenic mice. We identify p130Cas as an effector molecule of Src and show that the phosphorylated p130Cas is elevated in murine and cellular models of SBMA. These results suggest that Src kinase inhibition is a potential therapy for SBMA.
Spinal and bulbar muscular atrophy is a neuromuscular disease caused by an expanded CAG repeat in the androgen receptor gene. Here the authors show that Src kinase signaling is activated in a mouse model of the disease, and that Src inhibition improves pathology and behavioral symptoms in mice.
Journal Article
Beyond motor neurons: expanding the clinical spectrum in Kennedy’s disease
by
Manzano, Raquel
,
Sorarú, Gianni
,
Zuccaro, Emanuela
in
Androgens
,
Autonomic Nervous System Diseases - genetics
,
Autonomic Nervous System Diseases - pathology
2018
Kennedy’s disease, or spinal and bulbar muscular atrophy (SBMA), is an X-linked neuromuscular condition clinically characterised by weakness, atrophy and fasciculations of the limb and bulbar muscles, as a result of lower motor neuron degeneration. The disease is caused by an abnormally expanded triplet repeat expansions in the ubiquitously expressed androgen receptor gene, through mechanisms which are not entirely elucidated. Over the years studies from both humans and animal models have highlighted the involvement of cell populations other than motor neurons in SBMA, widening the disease phenotype. The most compelling aspect of these findings is their potential for therapeutic impact: muscle, for example, which is primarily affected in the disease, has been recently shown to represent a valid alternative target for therapy to motor neurons. In this review, we discuss the emerging study of the extra-motor neuron involvement in SBMA, which, besides increasingly pointing towards a multidisciplinary approach for affected patients, deepens our understanding of the pathogenic mechanisms and holds potential for providing new therapeutic targets for this disease.
Journal Article
Development of a functional composite for the evaluation of spinal and bulbar muscular atrophy
by
Hashizume, Atsushi
,
Kishimoto, Yoshiyuki
,
Torii, Ryota
in
692/617
,
692/617/375/364
,
Androgens
2022
This study aimed to develop a functional measurement that combines quantitative motor evaluation index of various body regions in patients with spinal and bulbar muscular atrophy (SBMA). We assessed subjects with SBMA and healthy controls with quantitative muscle strength measurements and functional scales. We selected tongue pressure, grip power, % peak expiratory flow (%PEF), timed walking test, and % forced vital capacity (%FVC) as components. By combining these values with Z-score, we created a functional composite (SBMA functional composite: SBMAFC). We also calculated the standardized response mean to compare the sensitivity of SBMAFC with that of existing measurements. A total of 97 genetically confirmed patients with SBMA and 36 age- and sex-matched healthy controls were enrolled. In the longitudinal analysis, the standardized response mean of SBMAFC was larger than that of existing rating scales. Receiver operating characteristic (ROC) analysis demonstrated that the SBMAFC is capable of distinguishing between subjects with early-stage SBMA and healthy controls. SBMAFC is more sensitive to disease progression than existing functional rating scales and is a potential outcome measure in clinical trials of SBMA.
Journal Article
Spinal and bulbar muscular atrophy with hand tremors and chronic limb weakness, Kennedy disease
by
Suzuki, Morika
,
Watari, Takashi
,
Watanabe, Genya
in
Androgens
,
Atrophy
,
Bulbo-Spinal Atrophy, X-Linked - complications
2025
Spinal and bulbar muscular atrophy (SBMA) is an X-linked neuromuscular disorder primarily affecting adult males due to the expansion of CAG repeats in the androgen receptor gene. It manifests as progressive lower motor neuropathy and androgen deficiency. A Japanese man in his late 50s presented with gradually progressive muscle weakness over 6 years. Examination revealed muscle weakness and atrophy in upper and lower limbs, decreased deep tendon reflexes, involuntary facial movements, bilateral finger tremors, tongue atrophy, fasciculations and bilateral gynaecomastia. Blood tests indicated elevated creatine kinase and mild hepatic dysfunction. Nerve conduction studies showed decreased sensory nerve action potentials, and electromyography demonstrated neurogenic changes. Genetic testing confirmed SBMA with 47 CAG repeats despite no family history. Treatment included leuprorelin acetate and rehabilitation using a wearable cyborg hybrid-assistive limb. As SBMA progresses slowly and symptoms like hand tremors and decreased serum creatinine precede significant weakness, early recognition is critical for diagnosis.
Journal Article
The French national protocol for Kennedy’s disease (SBMA): consensus diagnostic and management recommendations
by
Vial, Christophe
,
Wahbi, Karim
,
Bede, Peter
in
Adult
,
Androgen insensitivity
,
Androgen receptor
2020
Background
Kennedy’s disease (KD), also known as spinal and bulbar muscular atrophy (SBMA), is a rare, adult-onset, X-linked recessive neuromuscular disease caused by CAG expansions in exon 1 of the androgen receptor gene (AR). The objective of the French national diagnostic and management protocol is to provide evidence-based best practice recommendations and outline an optimised care pathway for patients with KD, based on a systematic literature review and consensus multidisciplinary observations.
Results
The initial evaluation, confirmation of the diagnosis, and management should ideally take place in a tertiary referral centre for motor neuron diseases, and involve an experienced multidisciplinary team of neurologists, endocrinologists, cardiologists and allied healthcare professionals. The diagnosis should be suspected in an adult male presenting with slowly progressive lower motor neuron symptoms, typically affecting the lower limbs at onset. Bulbar involvement (dysarthria and dysphagia) is often a later manifestation of the disease. Gynecomastia is not a constant feature, but is suggestive of a suspected diagnosis, which is further supported by electromyography showing diffuse motor neuron involvement often with asymptomatic sensory changes. A suspected diagnosis is confirmed by genetic testing. The multidisciplinary assessment should ascertain extra-neurological involvement such as cardiac repolarisation abnormalities (Brugada syndrome), signs of androgen resistance, genitourinary abnormalities, endocrine and metabolic changes (glucose intolerance, hyperlipidemia). In the absence of effective disease modifying therapies, the mainstay of management is symptomatic support using rehabilitation strategies (physiotherapy and speech therapy). Nutritional evaluation by an expert dietician is essential, and enteral nutrition (gastrostomy) may be required. Respiratory management centres on the detection and treatment of bronchial obstructions, as well as screening for aspiration pneumonia (chest physiotherapy, drainage, positioning, breath stacking, mechanical insufflation-exsufflation, cough assist machnie, antibiotics). Non-invasive mechanical ventilation is seldom needed. Symptomatic pharmaceutical therapy includes pain management, endocrine and metabolic interventions. There is no evidence for androgen substitution therapy.
Conclusion
The French national Kennedy’s disease protocol provides management recommendations for patients with KD. In a low-incidence condition, sharing and integrating regional expertise, multidisciplinary experience and defining consensus best-practice recommendations is particularly important. Well-coordinated collaborative efforts will ultimately pave the way to the development of evidence-based international guidelines.
Journal Article