Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
282
result(s) for
"Bupivacaine - toxicity"
Sort by:
The protective effect of lipid emulsion in preventing bupivacaine-induced mitochondrial injury and apoptosis of H9C2 cardiomyocytes
2017
Lipid emulsion (LE) has been shown to be effective in the resuscitation of bupivacaine-induced cardiac arrest, but the precise mechanism of this action has not been fully elucidated. Pursuant to this lack of information on the mechanism in which LE protects the myocardium during bupivacaine-induced toxicity, we explored mitochondrial function and cell apoptosis. H9C2 cardiomyocytes were used in study. Cells were randomly divided in different groups and were cultivated 6 h, 12 h, and 24 h. The mitochondria were extracted and mitochondrial ATP content was measured, as was mitochondrial membrane potential, the concentration of calcium ion (Ca2+), and the activity of Ca2+-ATP enzyme (Ca2+-ATPase). Cells from groups Bup1000, LE group, and Bup1000LE were collected to determine cell viability, cell apoptosis, and electron microscopy scanning of mitochondrial ultrastructure (after 24 h). We found that LE can reverse the inhibition of the mitochondrial function induced by bupivacaine, regulate the concentration of calcium ion in mitochondria, resulting in the protection of myocardial cells from toxicity induced by bupivacaine.
Journal Article
The Potency of Cytotoxic Mechanisms of Local Anesthetics in Human Chondrocyte Cells
by
Chen, Jia-Lin
,
Wu, Chia-Chun
,
Huang, Shih-Ming
in
Anesthetics, Local - pharmacology
,
Apoptosis
,
Apoptosis - drug effects
2024
Local anesthetics are commonly used in various clinical settings for both prevention and symptom relief. Numerous clinical studies have demonstrated that intra-articular injections of local anesthetics achieve high success rates in orthopedic practices. However, several widely used local anesthetics, including bupivacaine, lidocaine, and ropivacaine, have been shown to exhibit toxicity to chondrocytes, with the underlying mechanisms of chondrotoxicity remaining poorly understood. In this study, we aimed to investigate the cytotoxic effects of local anesthetics, specifically focusing on the consequences of a single intra-articular injection in human chondrocyte cells. Our results reveal that lidocaine, levobupivacaine, bupivacaine, and ropivacaine induced cell death, characterized by the induction of apoptosis and the suppression of cellular proliferation. These effects were mediated through mechanisms involving oxidative stress, mitochondrial dysfunction, and autophagy pathways. We found that the toxic effects of local anesthetics were concentration-dependent, with lidocaine exhibiting the lowest cytotoxicity among the tested agents in TC28a cells. Notably, bupivacaine and levobupivacaine displayed significant cytotoxic effects related to apoptosis, cellular proliferation, reactive oxygen species generation, mitochondrial membrane potential depolarization, and autophagy in human chondrocyte cells. Our findings not only support existing clinical studies but also highlight potential targets for developing protective agents to mitigate serious side effects associated with their use in orthopedic practices.
Journal Article
Dexamethasone as Adjuvant to Bupivacaine Prolongs the Duration of Thermal Antinociception and Prevents Bupivacaine-Induced Rebound Hyperalgesia via Regional Mechanism in a Mouse Sciatic Nerve Block Model
2015
Dexamethasone has been studied as an effective adjuvant to prolong the analgesia duration of local anesthetics in peripheral nerve block. However, the route of action for dexamethasone and its potential neurotoxicity are still unclear.
A mouse sciatic nerve block model was used. The sciatic nerve was injected with 60ul of combinations of various medications, including dexamethasone and/or bupivacaine. Neurobehavioral changes were observed for 2 days prior to injection, and then continuously for up to 7 days after injection. In addition, the sciatic nerves were harvested at either 2 days or 7 days after injection. Toluidine blue dyeing and immunohistochemistry test were performed to study the short-term and long-term histopathological changes of the sciatic nerves. There were six study groups: normal saline control, bupivacaine (10mg/kg) only, dexamethasone (0.5mg/kg) only, bupivacaine (10mg/kg) combined with low-dose (0.14mg/kg) dexamethasone, bupivacaine (10mg/kg) combined with high-dose (0.5mg/kg) dexamethasone, and bupivacaine (10mg/kg) combined with intramuscular dexamethasone (0.5mg/kg).
High-dose perineural dexamethasone, but not systemic dexamethasone, combined with bupivacaine prolonged the duration of both sensory and motor block of mouse sciatic nerve. There was no significant difference on the onset time of the sciatic nerve block. There was \"rebound hyperalgesia\" to thermal stimulus after the resolution of plain bupivacaine sciatic nerve block. Interestingly, both low and high dose perineural dexamethasone prevented bupivacaine-induced hyperalgesia. There was an early phase of axon degeneration and Schwann cell response as represented by S-100 expression as well as the percentage of demyelinated axon and nucleus in the plain bupivacaine group compared with the bupivacaine plus dexamethasone groups on post-injection day 2, which resolved on post-injection day 7. Furthermore, we demonstrated that perineural dexamethasone, but not systemic dexamethasone, could prevent axon degeneration and demyelination. There was no significant caspase-dependent apoptosis process in the mouse sciatic nerve among all study groups during our study period.
Perineural, not systemic, dexamethasone added to a clinical concentration of bupivacaine may not only prolong the duration of sensory and motor blockade of sciatic nerve, but also prevent the bupivacaine-induced reversible neurotoxicity and short-term \"rebound hyperalgesia\" after the resolution of nerve block.
Journal Article
Neurotoxicity of bupivacaine and liposome bupivacaine after sciatic nerve block in healthy and streptozotocin-induced diabetic mice
by
Kuroda, Max
,
Cvetko, Erika
,
Hadžić, Admir
in
Anesthesiology and pain management
,
Anesthetics
,
Anesthetics, Local - toxicity
2020
Background
Long-acting local anaesthetics (e.g. bupivacaine hydrochloride) or sustained-release formulations of bupivacaine (e.g. liposomal bupivacaine) may be neurotoxic when applied in the setting of diabetic neuropathy. The aim of the study was to assess neurotoxicity of bupivacaine and liposome bupivacaine in streptozotocin (STZ) - induced diabetic mice after sciatic nerve block. We used the reduction in fibre density and decreased myelination assessed by G-ratio (defined as axon diameter divided by large fibre diameter) as indicators of local anaesthetic neurotoxicity.
Results
Diabetic mice had higher plasma levels of glucose (
P
< 0.001) and significant differences in the tail flick and plantar test thermal latencies compared to healthy controls (
P
< 0.001). In both diabetic and nondiabetic mice, sciatic nerve block with 0.25% bupivacaine HCl resulted in a significantly greater G-ratio and an axon diameter compared to nerves treated with 1.3% liposome bupivacaine or saline (0.9% sodium chloride) (
P < 0.01
). Moreover, sciatic nerve block with 0.25% bupivacaine HCl resulted in lower fibre density and higher large fibre and axon diameters compared to the control (untreated) sciatic nerves in both STZ-induced diabetic (
P < 0.05
) and nondiabetic mice (
P < 0.01
). No evidence of acute or chronic inflammation was observed in any of the treatment groups.
Conclusions
In our exploratory study the sciatic nerve block with bupivacaine HCl (7 mg/kg), but not liposome bupivacaine (35 mg/kg) or saline, resulted in histomorphometric indices of neurotoxicity. Histologic findings were similar in diabetic and healthy control mice.
Journal Article
Lipid Infusion Accelerates Removal of Bupivacaine and Recovery From Bupivacaine Toxicity in the Isolated Rat Heart
by
Feinstein, Douglas L.
,
Hoffman, William
,
Strichartz, Gary
in
Analysis of Variance
,
Anesthetics, Local - metabolism
,
Anesthetics, Local - toxicity
2006
Infusion of a lipid emulsion has been advocated for treatment of severe bupivacaine cardiac toxicity. The mechanism of lipid rescue is unknown. These studies address the possibility that lipid infusion reduces cardiac bupivacaine content in the context of cardiac toxicity.
We compared the effects of a 1% lipid emulsion with standard Krebs buffer after inducing asystole in isolated rat heart with 500 μmol/L bupivacaine. We compared times to first heart beat and recovery of 90% of baseline rate pressure product (RPP = heart rate × [left ventricular systolic pressure − left ventricular diastolic pressure]) between controls and hearts receiving 1% lipid immediately after bupivacaine. We also used minibiopsies to compare control bupivacaine tissue content with hearts getting lipid immediately after an infusion of radiolabeled bupivacaine. We then compared bupivacaine efflux from hearts with and without lipid infusion started 75 seconds after radiolabeled bupivacaine was administered.
Infusion of lipid resulted in more rapid return of spontaneous contractions and full recovery of cardiac function. Average (± SEM) times to first beat and to 90% recovery of rate pressure product were 44.6 ± 3.5 versus 63.8 ± 4.3 seconds (
P < .01) and 124.7 ± 12.4 versus 219.8 ± 25.6 seconds (
P < .01) for lipid and controls, respectively. Lipid treatment resulted in more rapid loss of bupivacaine from heart tissue (
P < .0016). Late lipid infusion, 75 seconds after bupivacaine infusion ended, increased the release of bupivacaine measured in effluent for the first 15-second interval compared with controls (183 vs. 121 nmol, n = 5 for both groups,
P < .008).
Lipid emulsion speeds loss of bupivacaine from cardiac tissue while accelerating recovery from bupivacaine-induced asystole. These findings are consistent with the hypothesis that bupivacaine partitions into the emulsion and supports the concept of a “lipid sink.” However, the data do not exclude other possible mechanisms of action.
Journal Article
Neurotoxicity Comparison of Two Types of Local Anaesthetics: Amide-Bupivacaine versus Ester-Procaine
Local anaesthetics (LAs) may lead to neurological complications, but the underlying mechanism is still unclear. Many neurotoxicity research studies have examined different LAs, but none have comprehensively explored the distinct mechanisms of neurotoxicity caused by amide- (bupivacaine) and ester- (procaine) type LAs. Here, based on a CCK8 assay, LDH assay, Rhod-2-AM and JC-1 staining, 2′,7′-dichlorohy-drofluorescein diacetate and dihydroethidium probes, an alkaline comet assay, and apoptosis assay, we show that both bupivacaine and procaine significantly induce mitochondrial calcium overload and a decline in the mitochondrial membrane potential as well as overproduction of ROS, DNA damage and apoptosis (P < 0.05). There were no significant differences in mitochondrial injury and apoptosis between the bupivacaine and procaine subgroups (P > 0.05). However, to our surprise, the superoxide anionic level after treatment with bupivacaine, which leads to more severe DNA damage, was higher than the level after treatment with procaine, while procaine produced more peroxidation than bupivacaine. Some of these results were also affirmed in dorsal root ganglia neurons of C57 mice. The differences in the superoxidation and peroxidation induced by these agents suggest that different types of LAs may cause neurotoxicity via different pathways. We can target more accurate treatment based on their different mechanisms of neurotoxicity.
Journal Article
Neurotoxicity Induced by Bupivacaine via T-Type Calcium Channels in SH-SY5Y Cells
2013
There is concern regarding neurotoxicity induced by the use of local anesthetics. A previous study showed that an overload of intracellular calcium is involved in the neurotoxic effect of some anesthetics. T-type calcium channels, which lower the threshold of action potentials, can regulate the influx of calcium ions. We hypothesized that T-type calcium channels are involved in bupivacaine-induced neurotoxicity. In this study, we first investigated the effects of different concentrations of bupivacaine on SH-SY5Y cell viability, and established a cell injury model with 1 mM bupivacaine. The cell viability of SH-SY5Y cells was measured following treatment with 1 mM bupivacaine and/or different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride, an antagonist of T-type calcium channels for 24 h. In addition, we monitored the release of lactate dehydrogenase, cytosolic Ca(2+) ([Ca2+]i), cell apoptosis and caspase-3 expression. SH-SY5Y cells pretreated with different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride improved cell viability, reduced lactate dehydrogenase release, inhibited apoptosis, and reduced caspase-3 expression following bupivacaine exposure. However, the protective effect of NNC 55-0396 dihydrochloride plateaued. Overall, our results suggest that T-type calcium channels may be involved in bupivacaine neurotoxicity. However, identification of the specific subtype of T calcium channels involved requires further investigation.
Journal Article
Resveratrol Suppresses Bupivacaine-Induced Spinal Neurotoxicity in Rats by Inhibiting Endoplasmic Reticulum Stress via SIRT1 Modulation
2023
Bupivacaine (BUP) may cause neurotoxic effects after spinal anesthesia. Resveratrol (RSV), a natural agonist of Silent information regulator 1 (SIRT1), protects various tissues and organs from damage by regulating endoplasmic reticulum (ER) stress. The aim of this study is to explore whether RSV could alleviate the neurotoxicity induced by bupivacaine via regulating ER stress. We established a model of bupivacaine-induced spinal neurotoxicity in rats using intrathecal injection of 5% bupivacaine. The protective effect of RSV was evaluated by injecting intrathecally with 30 μg/μL RSV in total of 10 μL per day for 4 consecutive days. On day 3 after bupivacaine administration, tail-flick latency (TFL) tests and the Basso, Beattie, and Bresnahan (BBB) locomotor scores were assessed to neurological function, and the lumbar enlargement of the spinal cord was obtained. H&E and Nissl staining were used to evaluate the histomorphological changes and the number of survival neurons. TUNEL staining was conducted to determine apoptotic cells. The expression of proteins was detected by IHC, immunofluorescence, and western blot. The mRNA level of SIRT1 was determined by RT-PCR. Bupivacaine caused spinal cord neurotoxicity by inducing cell apoptosis and triggering ER stress. RSV treatment promoted the recovery of neurological dysfunction after bupivacaine administration by suppressing neuronal apoptosis and ER stress. Furthermore, RSV upregulated SIRT1 expression and inhibited PERK signaling pathway activation. In summary, resveratrol suppresses bupivacaine-induced spinal neurotoxicity in rats by inhibiting endoplasmic reticulum stress via SIRT1 modulation.
Journal Article
Bupivacaine and Triamcinolone May Be Toxic To Human Chondrocytes: A Pilot Study
by
Jobe, Christopher M.
,
Green, Lora
,
Syed, Hasan M.
in
Anesthetics, Local - toxicity
,
Arthroplasty
,
Basic Research
2011
Background
Intraarticular injections of corticosteroids combined with local anesthetics are commonly used for management of chronic pain symptoms associated with degenerative joint diseases and after arthroscopic procedures. Several studies suggest chondrotoxicity of local anesthetics whereas others report chondroprotective and cytotoxic effects of corticosteroids on cartilage. Given the frequency of use of these agents, it is important to know whether they are in fact toxic.
Questions/purposes
We asked whether (1) bupivacaine and triamcinolone acetonide, alone and combined, were chondrotoxic to chondrocytes in culture; (2) buffering of the reagents diminished toxicity of the bupivacaine and triamcinolone; and (3) the presence of the superficial layer of articular cartilage protects against toxicity.
Materials and Methods
We obtained cartilage from three patients undergoing arthroplasty. To address triamcinolone acetonide, bupivacaine, and combinatorial toxicity to human chondrocytes, we set up monolayer chondrocyte cultures (n = 8 wells per condition). The question of buffering was addressed by performing the same assays as above, but the reagents were buffered. An MTT assay was used to assess chondrocyte survival in the monolayer. We harvested 21 articular plugs from each of three patients (total 63 plugs) and exposed them to the same reagents as above, including the buffered reagents. A Live/Dead assay was used to determine chondrocyte survival.
Results
Triamcinolone acetonide, bupivacaine, and their combination were toxic to human chondrocytes in the monolayer comparisons. The addition of buffering did not mitigate chondrocyte death. With the intact superficial layer in the plug group, bupivacaine was not toxic as compared with for the control group; all the other reagents (triamcinolone, combination bupivacaine/triamcinolone, buffered bupivacaine, buffered triamcinolone, and buffered combination) produced chondrotoxicity.
Conclusions
Triamcinolone induced chondrotoxicity in the articular plug and monolayer culture, whereas bupivacaine induced chondrotoxicity only in monolayer culture. The combined used of triamcinolone and bupivacaine did not show additive chondrocyte death in any arm. Buffering of bupivacaine increased its chondrotoxicity.
Clinical Relevance
Although not necessarily reflecting in vivo conditions, our data suggest physicians should be cognizant of the potential in vitro chondrotoxicity of bupivacaine and triamcinolone when contemplating intraarticular administration.
Journal Article
Increased Chondrocyte Death after Steroid and Local Anesthetic Combination
by
Illés, Tamás
,
Kvell, Krisztián
,
Farkas, Boglárka
in
Amides - toxicity
,
Anesthetics
,
Anesthetics, Local - toxicity
2010
Background
Hyaline articular cartilage has limited repair and regeneration capacity. Intraarticular administration of glucocorticoid and local anesthetic injections play an important role in the therapy of osteoarthritis. Glucocorticoids and anesthetics reportedly enhance apoptosis in chondrocytes, but effects of the combined use of glucocorticoids and local anesthetics are unknown.
Questions/purposes
We asked whether glucocorticoid and local anesthetic agents combined had any synergistic effects on chondrocyte apoptosis.
Methods
Cell viability and apoptosis/necrosis assessment of human articular chondrocytes were performed in vitro (chondrocyte cell cultures) and ex vivo (osteochondral specimens) using flow cytometry and TUNEL analysis, respectively.
Results
Glucocorticoids and local anesthetics induce apoptosis in chondrocytes at various rates. When used in combination, the percentage of dead chondrocytes was increased in in vitro chondrocyte cell cultures and osteochondral ex vivo specimens.
Conclusions
We observed a time-dependent decrease in chondrocyte viability after concurrent steroid and local anesthetic exposure.
Clinical Relevance
The combination of glucocorticoids and local anesthetics has an adverse effect on articular chondrocytes, and it raises a question regarding whether concomitant administration should be used in treating osteoarthritis.
Journal Article