Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
25,193 result(s) for "CARBON RATIO"
Sort by:
Crassulacean acid metabolism: a continuous or discrete trait?
The key components of crassulacean acid metabolism (CAM) – nocturnal fixation of atmospheric CO2 and its processing via Rubisco in the subsequent light period – are now reasonably well understood in terms of the biochemical reactions defining this water-saving mode of carbon assimilation. Phenotypically, however, the degree to which plants engage in the CAM cycle relative to regular C3 photosynthesis is highly variable. Depending upon species, ontogeny and environment, the contribution of nocturnal CO2 fixation to 24-h carbon gain can range continuously from close to 0% to 100%. Nevertheless, not all possible combinations of light and dark CO2 fixation appear equally common. Large-scale surveys of carbon-isotope ratios typically show a strongly bimodal frequency distribution, with relatively few intermediate values. Recent research has revealed that many species capable of low-level CAM activity are nested within the peak of C3-type isotope signatures. While questions remain concerning the adaptive significance of dark CO2 fixation in such species, plants with low-level CAM should prove valuable models for investigating the discrete changes in genetic architecture and gene expression that have enabled the evolutionary transition from C3 to CAM.
SOM genesis: microbial biomass as a significant source
Proper management of soil organic matter (SOM) is needed for maintaining soil fertility and for mitigation of the global increase in atmospheric CO 2 concentrations and should be informed by knowledge about the sources, spatial organisation and stabilisation processes of SOM. Recently, microbial biomass residues (i.e. necromass) have been identified as a significant source of SOM. Here, we propose that cell wall envelopes of bacteria and fungi are stabilised in soil and contribute significantly to small-particulate SOM formation. This hypothesis is based on the mass balance of a soil incubation experiment with 13 C-labelled bacterial cells and on the visualisation of the microbial residues by means of scanning electron microscopy (SEM). At the end of a 224-day incubation, 50% of the biomass-derived C remained in the soil, mainly in the non-living part of SOM (40% of the added biomass C). SEM micrographs only rarely showed intact cells. Instead, organic patchy fragments of 200—500 nm size were abundant and these fragments were associated with all stages of cell envelope decay and fragmentation. Similar fragments, developed on initially clean and sterile in situ microcosms during exposure to groundwater, provide clear evidence for their formation during microbial growth and surface colonisation. Microbial cell envelope fragments thus contribute significantly to SOM formation. This origin and the related macromolecular architecture of SOM are consistent with most observations on SOM, including the abundance of microbial-derived biomarkers, the low C/N ratio, the water repellency and the stabilisation of biomolecules, which in theory should be easily degradable.
C/N ratio and carbon source-dependent lipid production profiling in Rhodotorula toruloides
Microbial oils are lipids produced by oleaginous microorganisms, which can be used as a potential feedstock for oleochemical production. The oleaginous yeast Rhodotorula toruloides can co-produce microbial oils and high-value compounds from low-cost substrates, such as xylose and acetic acid (from hemicellulosic hydrolysates) and raw glycerol (a byproduct of biodiesel production). One step towards economic viability is identifying the best conditions for lipid production, primarily the most suitable carbon-to-nitrogen ratio (C/N). Here, we aimed to identify the best conditions and cultivation mode for lipid production by R. toruloides using various low-cost substrates and a range of C/N ratios (60, 80, 100, and 120). Turbidostat mode was used to achieve a steady state at the maximal specific growth rate and to avoid continuously changing environmental conditions (i.e., C/N ratio) that inherently occur in batch mode. Regardless of the carbon source, higher C/N ratios increased lipid yields (up to 60% on xylose at a C/N of 120) but decreased the specific growth rate. Growth on glycerol resulted in the highest specific growth and lipid production (0.085 g lipids/gDW*h) rates at C/Ns between 60 and 100. We went on to study lipid production using glycerol in both batch and fed-batch modes, which resulted in lower specific lipid production rates compared with turbisdostat, however, fed batch is superior in terms of biomass production and lipid titers. By combining the data we obtained in these experiments with a genome-scale metabolic model of R. toruloides, we identified targets for improvements in lipid production that could be carried out either by metabolic engineering or process optimization.
Incorporation of shoot versus root-derived ¹³C and ¹⁵N into mineral-associated organic matter fractions
Mineral-associated organic matter (MAOM) is a key component of the global carbon (C) and nitrogen (N) cycles, but the processes controlling its formation from plant litter are not well understood. Recent evidence suggests that more MAOM will form from higher quality litters (e.g., those with lower C/N ratios and lower lignocellulose indices), than lower quality litters. Shoots and roots of the same non-woody plant can provide good examples of high and low quality litters, respectively, yet previous work tends to show a majority of soil organic matter is root-derived. We investigated the effect of litter quality on MAOM formation from shoots versus roots using a litter-soil slurry incubation of isotopically labeled (¹³C and ¹⁵N) shoots or roots of Big Bluestem (Andropogon gerardii) with isolated silt or clay soil fractions. The slurry method minimized the influence of soil structure and maximized contact between plant material and soil. We tracked the contribution of shoot- and root-derived C and N to newly formed MAOM over 60 days. We found that shoots contributed more C and N to MAOM than roots. The formation of shoot-derived MAOM was also more efficient, meaning that less CO₂ was respired per unit MAOM formed. We suggest that these results are driven by initial differences in litter chemistry between the shoot and root material, while results of studies showing a majority of soil organic matter is root-derived may be driven by alternate mechanisms, such as proximity of roots to mineral surfaces, greater contribution of roots to aggregate formation, and root exudation. Across all treatments, newly formed MAOM had a low C/N ratio compared to the parent plant material, which supports the idea that microbial processing of litter is a key pathway of MAOM formation.
Soil microbes, carbon, nitrogen, and the carbon to nitrogen ratio indicate priming effects across terrestrial ecosystems
PurposeThe control of the exogenous carbon-induced soil-priming effect (PE) by soil microbes, carbon, nitrogen, and carbon/nitrogen is still uncertain. To examine the relationship between diverse soil properties and the PE, the research was conducted using soils from forest, cropland, and grassland ecosystems.MethodsWe introduced a solution of 13C-labeled glucose (containing 6 atom% 13C) into soils collected from three distinct ecosystems. For the control group, we added an equal amount of water to the soils. Subsequently, all treatment and control samples were incubated at 60% of their water holding capacity and maintained at a temperature of 25 °C for a period of 28 days.ResultsThe magnitude of priming on native SOC was significantly higher in grassland ecosystems than in forest and cropland ecosystems. The results of structural equation modelling revealed a significant positive association of the PE with the soil carbon/nitrogen ratio, bacterial diversity, and community composition, as well as a negative association of the PE with SOC, dissolved organic carbon, and total nitrogen. Network analysis showed that the keystone taxa for each ecosystem were different. Sphingomonas, SBR1031, BD2-11-terrestrial-group, and Sebacina were the keystone taxa significantly positively associated with the PE, whereas Solirubrobacter, Bacillus, and Preussia were the keystone taxa significantly negatively associated with the PE.ConclusionOur findings are significant for studying carbon fluxes, improving soil carbon dynamics models, and understanding soil microbe, carbon, and nitrogen relationships with SOC mineralization. This understanding is crucial for mitigating climate change, promoting sustainable land management, and enhancing soil carbon stabilization.
Substrate quality and concentration control decomposition and microbial strategies in a model soil system
Soil carbon models typically scale decomposition linearly with soil carbon (C) concentration, but this linear relationship has not been experimentally verified. Here we investigated the underlying biogeochemical mechanisms controlling the relationships between soil C concentration and decomposition rates. We incubated a soil/sand mixture with increasing amounts of finely ground plant residue in the laboratory at constant temperature and moisture for 63 days. The plant residues were rye (Secale cereale, C/N ratio of 23) and wheat straw (Triticum spp., C/N ratio of 109) at seven soil C concentrations ranging from 0.38 to 2.99%. We measured soil respiration, dissolved organic carbon (DOC) concentrations, microbial biomass, and potential enzyme activities over the course of the incubation. Rye, which had higher N and DOC contents, lost 6 to 8 times more C as CO₂ compared to wheat residue. Under rye and wheat amendment, absolute C losses as CO₂ (calculated per g dry soil) increased linearly with C concentration while relative C losses as CO₂ (expressed as percent of initial C) increased with C concentration following a quadratic function. In low C concentration treatments (0.38–0.79% OC), DOC decreased gradually from day 3 to day 63, microbial C increased towards the end in the rye treatment or decreased only slightly with straw amendment, and microbes invested in general enzymes such as proteases and oxidative enzymes. At increasing C levels, enzyme activity shifted to degrading cellulose after 15 days and degrading microbial necromass (e. g. chitin) after 63 days. At the highest C concentrations (2.99% OC), microbial biomass peaked early in the incubation and remained high in the rye treatment and decreased only slightly in the wheat treatment. While wheat lost C as CO₂ constantly at all C concentrations, respiration dynamics in the rye treatment strongly depended on C concentration. Our results indicate that litter quality and C concentration regulate enzyme activities, DOC concentrations, and microbial respiration. The potential for non-linear relationships between soil C concentration and decomposition may need to be considered in soil C models and soil C sequestration management approaches.
Forest fires in Canadian permafrost region
Wildfires burn approximately 1% of boreal forest yearly, being one of the most significant factors affecting soil organic matter (SOM) pools. Boreal forests are largely situated in the permafrost zone, which contains half of global soil carbon (C). Wildfires advance thawing of permafrost by burning the insulating organic layer and decreasing surface albedo, thus increasing soil temperatures. Fires also affect SOM quality through chemical and physical changes, such as the formation of resistant C compounds. The long-term post-fire effects on SOM quality, degradability and isotopic composition are not well known in permafrost forests. We studied the effect of forest fires on the proportional sizes of SOM pools with chemical fractionation (extracting with water, ethanol and acid) of soil samples (5, 30 and 50 cm depths) collected from a fire chronosequence in the upland mineral soils of the Canadian permafrost zone. We also determined the ¹³C and ¹⁵N isotopic composition of soil after fire. In the topsoil horizon (5 cm) recent fire areas contained a smaller fraction of labile SOM and were slightly more enriched with ¹⁵N and ¹³C than older fire areas. The SOM fraction ratios reverted towards pre-fire status with succession. Changes in SOM were less apparent deeper in the soil. Best predictors for the size of recalcitrant SOM fraction were active layer depth, vegetation biomass and soil C/N ratio, whereas microbial biomass was best predicted by the size of the recalcitrant SOM fraction. Results indicated that SOM in upland mineral soils at the permafrost surface could be mainly recalcitrant and its decomposition not particularly sensitive to changes resulting from fire.
Estimation of green house gas emissions from Koteshwar hydropower reservoir, India
The emissions of greenhouse gas (GHG) from soils are of significant importance for global warming. The biological and physico-chemical characteristics of soil affect the GHG emissions from soils of different land use types. Methane (CH 4 ), nitrous oxide (N 2 O), and carbon dioxide (CO 2 ) production rates from six forest and agricultural soil types in the Koteshwar hydropower reservoir catchments located in the Uttarakhand, India, were estimated and their relations with physico-chemical characteristics of soils were examined. The samples of different land use types were flooded and incubated under anaerobic condition at 30 °C for 60 days. The cumulative GHG production rates in reservoir catchment are found as 1.52 ± 0.26, 0.13 ± 0.02, and 0.0004 ± 0.0001 μg g soil −1  day −1 for CO 2 , CH 4 , and N 2 O, respectively, which is lower than global reservoirs located in the same eco-region. The significant positive correlation between CO 2 productions and labile organic carbon (LOC), CH 4 and C/N ratio, while N 2 O and N/P ratio, while pH of soils is negatively correlated, conforms their key role in GHG emissions. Carbon available as LOC in the reservoir catchment is found as 3–14% of the total ‟C” available in soils and 0–23% is retained in the soil after the completion of incubation. The key objective of this study to signify the C, N, and P ratios, LOC, and pH with GHG production rate by creating an incubation experiment (as in the case of benthic soil/sediment) in the lab for 60 days. In summary, the results suggest that carbon, as LOC were more sensitive indicators for CO 2 emissions and significant C, N, and P ratios, affects the GHG emissions. This study is useful for the hydropower industry to know the GHG production rates after the construction of reservoir so that its effect could be minimized by taking care of catchment area treatment plan.
Appropriate carbon–nitrogen ratio is beneficial to the accumulation of 9-cis-β-carotene during Dunaliella salina cultivation
The halotolerant green alga Dunaliella salina is widely cultivated in the industrial-scale production of natural β-carotene (containing 9-cis and all-trans isomers) due to its high carotenoid content. The management of environmental factors such as nitrogen deficiency is an efficient way to induce the production of β-carotene. However, it is not clear how changes in nitrogen concentration and the resulting changes in the carbon–nitrogen (C/N) ratio affect the β-carotene isomer configuration ratio and content. In this study, D. salina HG01 was cultured under different C/N ratios, growth parameters, β-carotene content and the ratio of two isomers, intracellular substance content, and antioxidant enzyme activity were determined. The results showed that although a large amount of β-carotene was accumulated in algae cells under a high C/N ratio, the high C/N ratio was not conducive to the increase of β-carotene content in unit culture volume and the proportion of 9-cis-β-carotene. However, the β-carotene content in per unit of culture volume (14.70 μg mL−1) under a medium C/N ratio and the proportion of 9-cis-β-carotene (39.31%) under a low C/N ratio were relatively higher. In addition, transcriptome sequencing revealed changes in the expression of genes related to photosynthesis, carbon and nitrogen. This study integrates the physiological and transcriptomics data related with β-carotene configuration changes in D. salina under different C/N ratios, which has practical implications for the industrial production of β-carotene. By optimizing the C/N ratio during cultivation, it is possible to enhance β-carotene content and improve the desired 9-cis isomer proportion. These findings can contribute to the development of more efficient and cost-effective production methods for natural β-carotene, thereby benefiting D. salina-based β-carotene industry.
Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra‐ and interspecific trait variability, and taxonomic signals
Analysing functional traits along environmental gradients can improve our understanding of the mechanisms structuring plant communities. Within forests, vertical gradients in light intensity, temperature and humidity are often pronounced. Vascular epiphytes are particularly suitable for studying the influence of these vertical gradients on functional traits because they lack contact with the soil and thus individual plants are entirely exposed to different environmental conditions, from the dark and humid understorey to the sunny and dry outer canopy. In this study, we analysed multiple aspects of the trait‐based ecology of vascular epiphytes: shifts in trait values with height above ground (as a proxy for vertical environmental gradients) at community and species level, the importance of intra‐ vs. interspecific trait variability, and trait differences among taxonomic groups. We assessed ten leaf traits for 1151 individuals belonging to 83 epiphyte species of all major taxonomic groups co‐occurring in a Panamanian lowland forest. Community mean trait values of many leaf traits were strongly correlated with height and particularly specific leaf area and chlorophyll concentration showed nonlinear, negative trends. Intraspecific trait variability was pronounced and accounted for one‐third of total observed trait variance. Intraspecific trait adjustments along the vertical gradient were common and seventy per cent of all species showed significant trait–height relationships. In addition, intraspecific trait variability was positively correlated with the vertical range occupied by species. We observed significant trait differences between major taxonomic groups (orchids, ferns, aroids, bromeliads). In ferns, for instance, leaf dry matter content was almost twofold higher than in the other taxonomic groups. This indicates that some leaf traits are taxonomically conserved. Our study demonstrates that vertical environmental gradients strongly influence functional traits of vascular epiphytes. In order to understand community composition along such gradients, it is central to study several aspects of trait‐based ecology, including both community and intraspecific trends of multiple traits.