Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,508 result(s) for "CD28 antigen"
Sort by:
Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation
CD28 and CTLA-4 (CD152) play essential roles in regulating T cell immunity, balancing the activation and inhibition of T cell responses, respectively. Although both receptors share the same ligands, CD80 and CD86, the specific requirement for two distinct ligands remains obscure. In the present study, we demonstrate that, although CTLA-4 targets both CD80 and CD86 for destruction via transendocytosis, this process results in separate fates for CTLA-4 itself. In the presence of CD80, CTLA-4 remained ligand bound, and was ubiquitylated and trafficked via late endosomes and lysosomes. In contrast, in the presence of CD86, CTLA-4 detached in a pH-dependent manner and recycled back to the cell surface to permit further transendocytosis. Furthermore, we identified clinically relevant mutations that cause autoimmune disease, which selectively disrupted CD86 transendocytosis, by affecting either CTLA-4 recycling or CD86 binding. These observations provide a rationale for two distinct ligands and show that defects in CTLA-4-mediated transendocytosis of CD86 are associated with autoimmunity.The inhibitory receptor CTLA-4 recognizes two ligands on opposing antigen-presenting cells, CD80 and CD86. Sansom and colleagues show CTLA-4 captures ligands by transendocytosis, whereupon low-affinity CD86 releases CTLA-4 at low pH to promote CTLA-4 recycling; however, high-affinity CD80 remains bound and targets CTLA-4 for ubiquitination and destruction.
T cell costimulatory receptor CD28 is a primary target for PD-1–mediated inhibition
Programmed cell death–1 (PD-1) is a coinhibitory receptor that suppresses T cell activation and is an important cancer immunotherapy target. Upon activation by its ligand PD-L1, PD-1 is thought to suppress signaling through the T cell receptor (TCR). By titrating PD-1 signaling in a biochemical reconstitution system, we demonstrate that the co-receptor CD28 is strongly preferred over the TCR as a target for dephosphorylation by PD-1–recruited Shp2 phosphatase. We also show that CD28, but not the TCR, is preferentially dephosphorylated in response to PD-1 activation by PD-L1 in an intact cell system. These results reveal that PD-1 suppresses T cell function primarily by inactivating CD28 signaling, suggesting that costimulatory pathways play key roles in regulating effector T cell function and responses to anti–PD-L1/PD-1 therapy.
Rescue of exhausted CD8 T cells by PD-1–targeted therapies is CD28-dependent
Programmed cell death–1 (PD-1)–targeted therapies enhance T cell responses and show efficacy in multiple cancers, but the role of costimulatory molecules in this T cell rescue remains elusive. Here, we demonstrate that the CD28/B7 costimulatory pathway is essential for effective PD-1 therapy during chronic viral infection. Conditional gene deletion showed a cell-intrinsic requirement of CD28 for CD8 T cell proliferation after PD-1 blockade. B7-costimulation was also necessary for effective PD-1 therapy in tumor-bearing mice. In addition, we found that CD8 T cells proliferating in blood after PD-1 therapy of lung cancer patients were predominantly CD28-positive. Taken together, these data demonstrate CD28-costimulation requirement for CD8 T cell rescue and suggest an important role for the CD28/B7 pathway in PD-1 therapy of cancer patients.
CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape
Chimeric antigen receptors (CARs) are synthetic antigen receptors that reprogram T cell specificity, function and persistence 1 . Patient-derived CAR T cells have demonstrated remarkable efficacy against a range of B-cell malignancies 1 – 3 , and the results of early clinical trials suggest activity in multiple myeloma 4 . Despite high complete response rates, relapses occur in a large fraction of patients; some of these are antigen-negative and others are antigen-low 1 , 2 , 4 – 9 . Unlike the mechanisms that result in complete and permanent antigen loss 6 , 8 , 9 , those that lead to escape of antigen-low tumours remain unclear. Here, using mouse models of leukaemia, we show that CARs provoke reversible antigen loss through trogocytosis, an active process in which the target antigen is transferred to T cells, thereby decreasing target density on tumour cells and abating T cell activity by promoting fratricide T cell killing and T cell exhaustion. These mechanisms affect both CD28- and 4-1BB-based CARs, albeit differentially, depending on antigen density. These dynamic features can be offset by cooperative killing and combinatorial targeting to augment tumour responses to immunotherapy. Chimeric antigen receptors (CARs) promote antigen loss in tumour cells by trogocytosis, which results in T cell fratricide killing and exhaustion but can be counteracted by cooperative killing and combinatorial targeting.
Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses
Targeted blockade of PD-1 with immune checkpoint inhibitors can activate Tcells to destroy tumors. PD-1 is believed to function mainly at the effector, but not in the activation, phase of T cell responses, yet how PD-1 function is restricted at the activation stage is currently unknown. Here we demonstrate that CD80 interacts with PD-L1 in cis on antigen-presenting cells (APCs) to disrupt PD-L1/PD-1 binding. Subsequently, PD-L1 cannot engage PD-1 to inhibit Tcell activation when APCs express substantial amounts of CD80. In knock-in mice in which cis-PD-L1/CD80 interactions do not occur, tumor immunity and autoimmune responses were greatly attenuated by PD-1.These findings indicate that CD80 on APCs limits the PD-1 coinhibitory signal,while promoting CD28-mediated costimulation, and highlight critical components for induction of optimal immune responses.
A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains
Chimeric antigen receptors (CARs) are engineered proteins designed to target T cells to cancer cells. To effectively activate the T cells in which they are expressed, CARs must contain a costimulatory domain. The CAR T cell products approved for the treatment of B cell lymphomas and/or acute lymphoblastic leukaemia or multiple myeloma incorporate either a CD28-derived or a 4-1BB-derived costimulatory domain. Almost all other clinically tested CARs also use costimulatory domains from CD28 or 4-1BB. In preclinical experiments, cytokine release is usually greater with CARs containing CD28 versus 4-1BB costimulatory domains; however, constructs with either domain confer similar anticancer activity in mouse models. T cell products expressing CARs with either CD28 or 4-1BB costimulatory domains have been highly efficacious in patients with relapsed haematological malignancies, with anti-CD19 products having similar activity regardless of the source of the costimulatory domain. In large-cohort clinical trials, the rates of neurological toxicities have been higher with CD28-costimulated CARs, although this finding is probably the result of a combination of factors rather than due to CD28 signalling alone. Future preclinical and clinical research should aim to compare different costimulatory domains while controlling for confounding variables. Herein, we provide an overview of T cell costimulation by CD28 and 4-1BB and, using the available preclinical and clinical data, compare the efficacy and toxicity profiles associated with CARs containing either costimulatory domain.Chimeric antigen receptor (CAR) T cell therapies are generating substantial excitement and have been approved for the treatment of various haematological malignancies. All approved CARs consist of an extracellular antigen-binding domain linked to an intracellular region containing a costimulatory domain and a T cell activation domain. A key question is whether the CD28-derived and 4-1BB-derived costimulatory domains used in current commercial CAR T cell products are associated with different cellular and clinical effects. Herein, Cappell and Kochenderfer provide an overview of CD28 and 4-1BB costimulatory pathways and compare the outcomes observed in preclinical and clinical studies with CARs incorporating either costimulatory domain.
Phase 1 Results of ZUMA-1: A Multicenter Study of KTE-C19 Anti-CD19 CAR T Cell Therapy in Refractory Aggressive Lymphoma
Outcomes for patients with refractory diffuse large B cell lymphoma (DLBCL) are poor. In the multicenter ZUMA-1 phase 1 study, we evaluated KTE-C19, an autologous CD3ζ/CD28-based chimeric antigen receptor (CAR) T cell therapy, in patients with refractory DLBCL. Patients received low-dose conditioning chemotherapy with concurrent cyclophosphamide (500 mg/m2) and fludarabine (30 mg/m2) for 3 days followed by KTE-C19 at a target dose of 2 × 106 CAR T cells/kg. The incidence of dose-limiting toxicity (DLT) was the primary endpoint. Seven patients were treated with KTE-C19 and one patient experienced a DLT of grade 4 cytokine release syndrome (CRS) and neurotoxicity. Grade ≥3 CRS and neurotoxicity were observed in 14% (n = 1/7) and 57% (n = 4/7) of patients, respectively. All other KTE-C19-related grade ≥3 events resolved within 1 month. The overall response rate was 71% (n = 5/7) and complete response (CR) rate was 57% (n = 4/7). Three patients have ongoing CR (all at 12+ months). CAR T cells demonstrated peak expansion within 2 weeks and continued to be detectable at 12+ months in patients with ongoing CR. This regimen of KTE-C19 was safe for further study in phase 2 and induced durable remissions in patients with refractory DLBCL. In a multicenter phase 1 study, Locke, Neelapu, et al. report tolerability and safety of KTE-C19, a CD19 chimeric antigen receptor technology, in patients with chemorefractory DLBCL. More importantly, KTE-C19 could provide durable clinical benefit in this difficult-to-treat patient population, demonstrating broad clinical applicability of KTE-C19.
Function of Novel Anti-CD19 Chimeric Antigen Receptors with Human Variable Regions Is Affected by Hinge and Transmembrane Domains
Anti-CD19 chimeric antigen receptor (CAR) T cells have caused remissions of B cell malignancies, but problems including cytokine-mediated toxicity and short persistence of CAR T cells in vivo might limit the effectiveness of anti-CD19 CAR T cells. Anti-CD19 CARs that have been tested clinically had single-chain variable fragments (scFvs) derived from murine antibodies. We have designed and constructed novel anti-CD19 CARs containing a scFv with fully human variable regions. T cells expressing these CARs specifically recognized CD19+ target cells and carried out functions including degranulation, cytokine release, and proliferation. We compared CARs with CD28 costimulatory moieties along with hinge and transmembrane domains from either the human CD28 molecule or the human CD8α molecule. Compared with T cells expressing CARs with CD28 hinge and transmembrane domains, T cells expressing CARs with CD8α hinge and transmembrane domains produced lower levels of cytokines and exhibited lower levels of activation-induced cell death (AICD). Importantly, CARs with hinge and transmembrane regions from either CD8α or CD28 had similar abilities to eliminate established tumors in mice. In anti-CD19 CARs with CD28 costimulatory moieties, lower levels of inflammatory cytokine production and AICD are potential clinical advantages of CD8α hinge and transmembrane domains over CD28 hinge and transmembrane domains. Hinge and transmembrane regions in anti-CD19 chimeric antigen receptors (CARs) have an important impact on the function of CAR-expressing T cells. CARs with hinge and transmembrane regions from CD8-alpha lead to lower levels of cytokine release and less activation-induced cell death than CARs with hinge and transmembrane regions from CD28.
Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells
T cells are readily expanded in culture using a system that presents membrane-bound and soluble cues in a natural context. Therapeutic ex vivo T-cell expansion is limited by low rates and T-cell products of limited functionality. Here we describe a system that mimics natural antigen-presenting cells (APCs) and consists of a fluid lipid bilayer supported by mesoporous silica micro-rods. The lipid bilayer presents membrane-bound cues for T-cell receptor stimulation and costimulation, while the micro-rods enable sustained release of soluble paracrine cues. Using anti-CD3, anti-CD28, and interleukin-2, we show that the APC-mimetic scaffolds (APC-ms) promote two- to tenfold greater polyclonal expansion of primary mouse and human T cells compared with commercial expansion beads (Dynabeads). The efficiency of expansion depends on the density of stimulatory cues and the amount of material in the starting culture. Following a single stimulation, APC-ms enables antigen-specific expansion of rare cytotoxic T-cell subpopulations at a greater magnitude than autologous monocyte-derived dendritic cells after 2 weeks. APC-ms support over fivefold greater expansion of restimulated CD19 CAR-T cells than Dynabeads, with similar efficacy in a xenograft lymphoma model.
Clinical and immunological responses after CD30-specific chimeric antigen receptor–redirected lymphocytes
Targeting CD30 with monoclonal antibodies in Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL) has had profound clinical success. However, adverse events, mainly mediated by the toxin component of the conjugated antibodies, cause treatment discontinuation in many patients. Targeting CD30 with T cells expressing a CD30-specific chimeric antigen receptor (CAR) may reduce the side effects and augment antitumor activity. We conducted a phase I dose escalation study in which 9 patients with relapsed/refractory HL or ALCL were infused with autologous T cells that were gene-modified with a retroviral vector to express the CD30-specific CAR (CD30.CAR-Ts) encoding the CD28 costimulatory endodomain. Three dose levels, from 0.2 × 108 to 2 × 108 CD30.CAR-Ts/m2, were infused without a conditioning regimen. All other therapy for malignancy was discontinued at least 4 weeks before CD30.CAR-T infusion. Seven patients had previously experienced disease progression while being treated with brentuximab. No toxicities attributable to CD30.CAR-Ts were observed. Of 7 patients with relapsed HL, 1 entered complete response (CR) lasting more than 2.5 years after the second infusion of CD30.CAR-Ts, 1 remained in continued CR for almost 2 years, and 3 had transient stable disease. Of 2 patients with ALCL, 1 had a CR that persisted 9 months after the fourth infusion of CD30.CAR-Ts. CD30.CAR-T expansion in peripheral blood peaked 1 week after infusion, and CD30.CAR-Ts remained detectable for over 6 weeks. Although CD30 may also be expressed by normal activated T cells, no patients developed impaired virus-specific immunity. CD30.CAR-Ts are safe and can lead to clinical responses in patients with HL and ALCL, indicating that further assessment of this therapy is warranted. ClinicalTrials.gov NCT01316146. National Cancer Institute (3P50CA126752, R01CA131027 and P30CA125123), National Heart, Lung, and Blood Institute (R01HL114564), and Leukemia and Lymphoma Society (LLSTR 6227-08).