Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
146 result(s) for "CD3 Complex - antagonists "
Sort by:
Talquetamab, a T-Cell–Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma
G protein-coupled receptor, family C, group 5, member D (GPRC5D) is an orphan receptor expressed in malignant plasma cells. Talquetamab, a bispecific antibody against CD3 and GPRC5D, redirects T cells to mediate killing of GPRC5D-expressing myeloma cells. In a phase 1 study, we evaluated talquetamab administered intravenously weekly or every other week (in doses from 0.5 to 180 μg per kilogram of body weight) or subcutaneously weekly, every other week, or monthly (5 to 1600 μg per kilogram) in patients who had heavily pretreated relapsed or refractory multiple myeloma that had progressed with established therapies (a median of six previous lines of therapy) or who could not receive these therapies without unacceptable side effects. The primary end points - the frequency and type of dose-limiting toxic effects (study part 1 only), adverse events, and laboratory abnormalities - were assessed in order to select the recommended doses for a phase 2 study. At the data-cutoff date, 232 patients had received talquetamab (102 intravenously and 130 subcutaneously). At the two subcutaneous doses recommended for a phase 2 study (405 μg per kilogram weekly [30 patients] and 800 μg per kilogram every other week [44 patients]), common adverse events were cytokine release syndrome (in 77% and 80% of the patients, respectively), skin-related events (in 67% and 70%), and dysgeusia (in 63% and 57%); all but one cytokine release syndrome event were of grade 1 or 2. One dose-limiting toxic effect of grade 3 rash was reported in a patient who had received talquetamab at the 800-μg dose level. At median follow-ups of 11.7 months (in patients who had received talquetamab at the 405-μg dose level) and 4.2 months (in those who had received it at the 800-μg dose level), the percentages of patients with a response were 70% (95% confidence interval [CI], 51 to 85) and 64% (95% CI, 48 to 78), respectively. The median duration of response was 10.2 months and 7.8 months, respectively. Cytokine release syndrome, skin-related events, and dysgeusia were common with talquetamab treatment but were primarily low-grade. Talquetamab induced a substantial response among patients with heavily pretreated relapsed or refractory multiple myeloma. (Funded by Janssen Research and Development; MonumenTAL-1 ClinicalTrials.gov number, NCT03399799.).
Teplizumab and β-Cell Function in Newly Diagnosed Type 1 Diabetes
Teplizumab, a humanized monoclonal antibody to CD3 on T cells, is approved by the Food and Drug Administration to delay the onset of clinical type 1 diabetes (stage 3) in patients 8 years of age or older with preclinical (stage 2) disease. Whether treatment with intravenous teplizumab in patients with newly diagnosed type 1 diabetes can prevent disease progression is unknown. In this phase 3, randomized, placebo-controlled trial, we assessed β-cell preservation, clinical end points, and safety in children and adolescents who were assigned to receive teplizumab or placebo for two 12-day courses. The primary end point was the change from baseline in β-cell function, as measured by stimulated C-peptide levels at week 78. The key secondary end points were the insulin doses that were required to meet glycemic goals, glycated hemoglobin levels, time in the target glucose range, and clinically important hypoglycemic events. Patients treated with teplizumab (217 patients) had significantly higher stimulated C-peptide levels than patients receiving placebo (111 patients) at week 78 (least-squares mean difference, 0.13 pmol per milliliter; 95% confidence interval [CI], 0.09 to 0.17; P<0.001), and 94.9% (95% CI, 89.5 to 97.6) of patients treated with teplizumab maintained a clinically meaningful peak C-peptide level of 0.2 pmol per milliliter or greater, as compared with 79.2% (95% CI, 67.7 to 87.4) of those receiving placebo. The groups did not differ significantly with regard to the key secondary end points. Adverse events occurred primarily in association with administration of teplizumab or placebo and included headache, gastrointestinal symptoms, rash, lymphopenia, and mild cytokine release syndrome. Two 12-day courses of teplizumab in children and adolescents with newly diagnosed type 1 diabetes showed benefit with respect to the primary end point of preservation of β-cell function, but no significant differences between the groups were observed with respect to the secondary end points. (Funded by Provention Bio and Sanofi; PROTECT ClinicalTrials.gov number, NCT03875729.).
An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes
In this trial, high-risk nondiabetic relatives of patients with type 1 diabetes were randomly assigned to receive teplizumab (an anti-CD3 monoclonal antibody) or placebo and were followed for type 1 diabetes. Teplizumab delayed progression to clinical type 1 diabetes in high-risk participants.
Randomised phase II trial to investigate catumaxomab (anti-EpCAM × anti-CD3) for treatment of peritoneal carcinomatosis in patients with gastric cancer
BackgroundPeritoneal carcinomatosis (PC) represents an unfavourable prognostic factor for patients with gastric cancer (GC). Intraperitoneal treatment with the bispecific and trifunctional antibody catumaxomab (EpCAM, CD3), in addition to systemic chemotherapy, could improve elimination of PC.MethodsThis prospective, randomised, phase II study investigated the efficacy of catumaxomab followed by chemotherapy (arm A, 5-fluorouracil, leucovorin, oxaliplatin, docetaxel, FLOT) or FLOT alone (arm B) in patients with GC and PC. Primary endpoint was the rate of macroscopic complete remission (mCR) of PC at the time of second diagnostic laparoscopy/laparotomy prior to optional surgery.ResultsMedian follow-up was 52 months. Out of 35 patients screened, 15 were allocated to arm A and 16 to arm B. mCR rate was 27% in arm A and 19% in arm B (p = 0.69). Severe side effects associated with catumaxomab were nausea, infection, abdominal pain, and elevated liver enzymes. Median progression-free (6.7 vs. 5.4 months, p = 0.71) and overall survival (13.2 vs. 13.0 months, p = 0.97) were not significantly different in both treatment arms.ConclusionsAddition of catumaxomab to systemic chemotherapy was feasible and tolerable in advanced GC. Although the primary endpoint could not be demonstrated, results are promising for future investigations integrating intraperitoneal immunotherapy into a multimodal treatment strategy.
Teclistamab in Relapsed or Refractory Multiple Myeloma
In this phase 1–2 study involving patients with relapsed or refractory myeloma, a bispecific antibody (teclistamab) that mediates T-cell activation and subsequent lysis of myeloma cells expressing B-cell maturation antigen induced responses in 63% of the patients, including a complete response in nearly 40%.
Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells
T cells are readily expanded in culture using a system that presents membrane-bound and soluble cues in a natural context. Therapeutic ex vivo T-cell expansion is limited by low rates and T-cell products of limited functionality. Here we describe a system that mimics natural antigen-presenting cells (APCs) and consists of a fluid lipid bilayer supported by mesoporous silica micro-rods. The lipid bilayer presents membrane-bound cues for T-cell receptor stimulation and costimulation, while the micro-rods enable sustained release of soluble paracrine cues. Using anti-CD3, anti-CD28, and interleukin-2, we show that the APC-mimetic scaffolds (APC-ms) promote two- to tenfold greater polyclonal expansion of primary mouse and human T cells compared with commercial expansion beads (Dynabeads). The efficiency of expansion depends on the density of stimulatory cues and the amount of material in the starting culture. Following a single stimulation, APC-ms enables antigen-specific expansion of rare cytotoxic T-cell subpopulations at a greater magnitude than autologous monocyte-derived dendritic cells after 2 weeks. APC-ms support over fivefold greater expansion of restimulated CD19 CAR-T cells than Dynabeads, with similar efficacy in a xenograft lymphoma model.
Base-edited CAR T cells for combinational therapy against T cell malignancies
Targeting T cell malignancies using chimeric antigen receptor (CAR) T cells is hindered by ‘T v T’ fratricide against shared antigens such as CD3 and CD7. Base editing offers the possibility of seamless disruption of gene expression of problematic antigens through creation of stop codons or elimination of splice sites. We describe the generation of fratricide-resistant T cells by orderly removal of TCR/CD3 and CD7 ahead of lentiviral-mediated expression of CARs specific for CD3 or CD7. Molecular interrogation of base-edited cells confirmed elimination of chromosomal translocations detected in conventional Cas9 treated cells. Interestingly, 3CAR/7CAR co-culture resulted in ‘self-enrichment’ yielding populations 99.6% TCR−/CD3−/CD7−. 3CAR or 7CAR cells were able to exert specific cytotoxicity against leukaemia lines with defined CD3 and/or CD7 expression as well as primary T-ALL cells. Co-cultured 3CAR/7CAR cells exhibited highest cytotoxicity against CD3 + CD7 + T-ALL targets in vitro and an in vivo human:murine chimeric model. While APOBEC editors can reportedly exhibit guide-independent deamination of both DNA and RNA, we found no problematic ‘off-target’ activity or promiscuous base conversion affecting CAR antigen-specific binding regions, which may otherwise redirect T cell specificity. Combinational infusion of fratricide-resistant anti-T CAR T cells may enable enhanced molecular remission ahead of allo-HSCT for T cell malignancies.
Generating tumor-selective conditionally active biologic anti-CTLA4 antibodies via protein-associated chemical switches
Anticytotoxic T lymphocyte-associated protein 4 (CTLA4) antibodies have shown potent antitumor activity, but systemic immune activation leads to severe immune-related adverse events, limiting clinical usage. We developed novel, conditionally active biologic (CAB) anti-CTLA4 antibodies that are active only in the acidic tumor microenvironment. In healthy tissue, this binding is reversibly inhibited by a novel mechanism using physiological chemicals as protein-associated chemical switches (PaCS). No enzymes or potentially immunogenic covalent modifications to the antibody are required for activation in the tumor. The novel anti-CTLA4 antibodies show similar efficacy in animal models compared to an analog of a marketed anti-CTLA4 biologic, but have markedly reduced toxicity in nonhuman primates (in combination with an anti-PD1 checkpoint inhibitor), indicating a widened therapeutic index (TI). The PaCS encompass mechanisms that are applicable to a wide array of antibody formats (e.g., ADC, bispecifics) and antigens. Examples shown here include antibodies to EpCAM, Her2, Nectin4, CD73, and CD3. Existing antibodies can be engineered readily to be made sensitive to PaCS, and the inhibitory activity can be optimized for each antigen’s varying expression level and tissue distribution. PaCS can modulate diverse physiological molecular interactions and are applicable to various pathologic conditions, enabling differential CAB antibody activities in normal versus disease microenvironments.
Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo
An effective strategy to cure HIV will likely require a potent and sustained antiviral T cell response. Here we explored the utility of chimeric antigen receptor (CAR) T cells, expressing the CD4 ectodomain to confer specificity for the HIV envelope, to mitigate HIV-induced pathogenesis in bone marrow, liver, thymus (BLT) humanized mice. CAR T cells expressing the 4-1BB/CD3-ζ endodomain were insufficient to prevent viral rebound and CD4 + T cell loss after the discontinuation of antiretroviral therapy. Through iterative improvements to the CAR T cell product, we developed Dual-CAR T cells that simultaneously expressed both 4-1BB/CD3-ζ and CD28/CD3-ζ endodomains. Dual-CAR T cells exhibited expansion kinetics that exceeded 4-1BB-, CD28- and third-generation costimulated CAR T cells, elicited effector functions equivalent to CD28-costimulated CAR T cells and prevented HIV-induced CD4 + T cell loss despite persistent viremia. Moreover, when Dual-CAR T cells were protected from HIV infection through expression of the C34-CXCR4 fusion inhibitor, these cells significantly reduced acute-phase viremia, as well as accelerated HIV suppression in the presence of antiretroviral therapy and reduced tissue viral burden. Collectively, these studies demonstrate the enhanced therapeutic potency of a novel Dual-CAR T cell product with the potential to effectively treat HIV infection. Chimeric antigen receptor T cells targeting HIV-infected cells prevent T cell loss and reduce virus in blood and tissues of HIV-infected humanized mice, highlighting a path toward a cell-based therapy for HIV infection.
Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome
Cytokine release syndrome (CRS) is a life-threatening complication of several new immunotherapies used to treat cancers and autoimmune diseases 1 – 5 . Here we report that atrial natriuretic peptide can protect mice from CRS induced by such agents by reducing the levels of circulating catecholamines. Catecholamines were found to orchestrate an immunodysregulation resulting from oncolytic bacteria and lipopolysaccharide through a self-amplifying loop in macrophages. Myeloid-specific deletion of tyrosine hydroxylase inhibited this circuit. Cytokine release induced by T-cell-activating therapeutic agents was also accompanied by a catecholamine surge and inhibition of catecholamine synthesis reduced cytokine release in vitro and in mice. Pharmacologic catecholamine blockade with metyrosine protected mice from lethal complications of CRS resulting from infections and various biotherapeutic agents including oncolytic bacteria, T-cell-targeting antibodies and CAR-T cells. Our study identifies catecholamines as an essential component of the cytokine release that can be modulated by specific blockers without impairing the therapeutic response. Atrial natriuretic peptide, an anti-inflammatory protein, can protect against cytokine release syndrome induced by therapeutic agents such as tumour-targeting bacteria and CAR-T cells by blocking catecholamine synthesis by macrophages.