Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
21 result(s) for "CITOSINA"
Sort by:
DNA methylation in plants
▪ Abstract  Methylation of cytosine residues in DNA provides a mechanism of gene control. There are two classes of methyltransferase in Arabidopsis; one has a carboxy-terminal methyltransferase domain fused to an amino-terminal regulatory domain and is similar to mammalian methyltransferases. The second class apparently lacks an amino-terminal domain and is less well conserved. Methylcytosine can occur at any cytosine residue, but it is likely that clonal transmission of methylation patterns only occurs for cytosines in strand-symmetrical sequences CpG and CpNpG. In plants, as in mammals, DNA methylation has dual roles in defense against invading DNA and transposable elements and in gene regulation. Although originally reported as having no phenotypic consequence, reduced DNA methylation disrupts normal plant development.
Developmental abnormalities and epimutations associated with DNA hypomethylation mutations
A number of aberrant morphological phenotypes were noted during propagation of the Arabidopsis thaliana DNA hypomethylation mutant, ddm1, by repeated self-pollination. Onset of a spectrum of morphological abnormalities, including defects in leaf structure, flowering time, and flower structure, was strictly associated with the ddm1 mutations. The morphological phenotypes arose at a high frequency in selfed ddm1 mutant lines and some phenotypes became progressively more severe in advancing generations. The transmission of two common morphological trait syndromes in genetic crosses demonstrated that the phenotypes are caused by heritable lesions that develop in ddm1 mutant backgrounds. Loss of cytosine methylation in specific genomic sequences during the selfing regime was noted in the ddm1 mutants. Potential mechanisms for formation of the lesions underlying the morphological abnormalities are discussed.
Rice (Oryza sativa) centromeric regions consist of complex DNA
Rice bacterial artificial chromosome clones containing centromeric DNA were isolated by using a DNA sequence (pSau3A9) that is present in the centromeres of Gramineae species. Seven distinct repetitive DNA elements were isolated from a 75-kilobase rice bacterial artificial chromosome clone. All seven DNA elements are present in every rice centromere as demonstrated by fluorescence in situ hybridization. Six of the elements are middle repetitive, and their copy numbers range from approximately 50 to approximately 300 in the rice genome. Five of these six middle repetitive DNA elements are present in all of the Gramineae species, and the other element is detected only in species within the Bambusoideae subfamily of Gramineae. All six middle repetitive DNA elements are dispersed in the centromeric regions. The seventh element, the RCS2 family, is a tandem repeat of a 168-bp sequence that is represented approximately 6,000 times in the rice genome and is detected only in Oryza species. Fiber-fluorescence in situ hybridization analysis revealed that the RCS2 family is organized into long uninterrupted arrays and resembles previously reported tandem repeats located in the centromeres of human and Arabidopsis thaliana chromosomes. We characterized a large DNA fragment derived from a plant centromere and demonstrated that rice centromeres consist of complex DNA, including both highly and middle repetitive DNA sequences
Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids
Nucleolar dominance is an epigenetic phenomenon in which one parental set of ribosomal RNA (rRNA) genes is silenced in an interspecific hybrid. In natural Arabidopsis suecica, an allotetraploid (amphidiploid) hybrid of Arabidopsis thaliana and Cardaminopsis arenosa, the A. thaliana rRNA genes are repressed. Interestingly, A. thaliana rRNA gene silencing is variable in synthetic Arabidopsis suecica F1 hybrids. Two generations are needed for A. thaliana rRNA genes to be silenced in all lines, revealing a species-biased direction but stochastic onset to nucleolar dominance. Backcrossing synthetic A. suecica to tetraploid A. thaliana yielded progeny with active A. thaliana rRNA genes and, in some cases, silenced C. arenosa rRNA genes, showing that the direction of dominance can be switched. The hypothesis that naturally dominant rRNA genes have a superior binding affinity for a limiting transcription factor is inconsistent with dominance switching. Inactivation of a species-specific transcription factor is argued against by showing that A. thaliana and C. arenosa rRNA genes can be expressed transiently in the other species. Transfected A. thaliana genes are also active in A. suecica protoplasts in which chromosomal A. thaliana genes are repressed. Collectively, these data suggest that nucleolar dominance is a chromosomal phenomenon that results in coordinate or cooperative silencing of rRNA genes
Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation
Endogenous plant genes or transgenes can be silenced on introduction of homologous gene sequences. Here we document a reporter gene-silencing event in Nicotiana tabacum that has a distinctive combination of features--i.e., (i) silencing occurs by a posttranscriptional process, (ii) silencing correlates with DNA methylation, and (iii) this de novo methylation is not restricted to cytosines located in the symmetrical motifs CG and CXG
Molecular characterization of the principal symbiotic bacteria of the weevil Sitophilus oryzae: a peculiar G+C content of an endocytobiotic DNA
The principal intracellular symbiotic bacteria of the cereal weevil Sitophilus oryzae were characterized using the sequence of the 16S rDNA gene (rrs gene) and G + C content analysis. Polymerase chain reaction amplification with universal eubacterial primers of the rrs gene showed a single expected sequence of 1.501 bp. Comparison of this sequence with the available database sequences placed the intracellular bacteria of S. oryzae as members of the Enterobacteriaceae family, closely related to the free-living bacteria, Erwinia herbicola and Escherichia coli, and the endocytobiotic bacteria of the tsetse fly and aphids. Moreover, by high-performance liquid chromatography, we measured the genomic G + C content of the S. oryzae principal endocytobiotes (SOPE) as 54%, while the known genomic G + C content of most intracellular bacteria is about 39.5%. Furthermore, based on the third codon position G + C content and the rrs gene G + C content, we demonstrated that most intracellular bacteria except SOPE are A + T biased irrespective of their phylogenetic position. Finally, using the hsp60 gene sequence, the codon usage of SOPE was compared with that of two phylogenetically closely related bacteria: E. coil, a free-living bacterium, and Buchnera aphidicola, the intracellular symbiotic bacteria of aphids. Taken together, these results show a peculiar and distinctly different DNA composition of SOPE with respect to the other obligate intracellular bacteria, and, combined with biological and biochemical data, they elucidate the evolution of symbiosis in S. oryzae
Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation
Changes in DNA methylation during tobacco pollen development have been studied by confocal fluorescence microscopy using a monoclonal anti-5-methylcytosine (anti-m5C) antibody and a polyclonal anti-histone HI (antihistone) antibody as an internal standard. The specificity of the anti-m5C antibody was demonstrated by a titration series against both single-stranded DNA and double-stranded DNA substrates in either the methylated or unmethylated forms. The antibody was found to show similar kinetics against both double- and single-stranded DNA, and the fluorescence was proportional to the amount of DNA used. No signal was observed with unmethylated substrates. The extent of methylation of the two pollen nuclei remained approximately constant after the mitotic division that gave rise to the vegetative and generative nuclei. However, during the subsequent development of the pollen, the staining of the generative nucleus decreased until it reached a normalized value of 1/2 of that of the vegetative nucleus. The use of a confocal microscope makes these data independent of possible focusing artefacts. The anti-histone antibody was used as a control to show that, while the antibody staining directed against 5-methylcytosine changed dramatically during pollen maturation, the histone signal did not. We observed the existence of structural dimorphism amongst tobacco pollen grains, the majority having three pollen apertures and the rest with four. However, the methylation changes observed occurred to the same extent in both subclasses
Methylation of the minimal promoter of an embryonic globin gene silences transcription in primary erythroid cells
Methylation of cytosines in the dinucleotide CpG has been shown to suppress transcription of a number of tissue-specific genes, yet the precise mechanism is not fully understood. The vertebrate globin genes were among the first examples in which an inverse correlation was shown between CpG methylation and transcription. We studied the methylation pattern of the 235-bp rho-globin gene promoter in genomic DNA from primary chicken erythroid cells using the sodium bisulfite conversion technique and found all CpGs in the promoter to be methylated in erythroid cells from adult chickens in which the rho-globin gene is silent but unmethylated in 5-day (primitive) embryonic red cells in which the gene is transcribed. To elucidate further the mechanism of methylation-induced silencing, an expression construct consisting of 235 bp of 5' promoter sequence of the rho-globin gene along with a strong 5' erythroid enhancer driving a chloramphenicol acetyltransferase reporter gene, rho-CAT, was transfected into primary avian erythroid cells derived from 5-day embryos. Methylation of just the 235-bp rho-globin gene promoter fragment at every CpG resulted in a 20- to 30-fold inhibition of transcription, and this effect was not overridden by the presence of potent erythroid-specific enhancers. The ability of the 235-bp rho-globin gene promoter to bind to a DNA Methyl Cytosine binding Protein Complex (MeCPC) was tested in electrophoretic mobility shift assays utilizing primary avian erythroid cell nuclear extract. The results were that fully methylated but not unmethylated 235-bp rho-globin gene promoter fragment could compete efficiently for MeCPC binding. These results are a direct demonstration that site-specific methylation of a globin gene promoter at the exact CpGs that are methylated in vivo can silence transcription in homologous primary erythroid cells. Further, these data implicate binding of MeCPC to the promoter in the mechanism of silencing
Distribution of genes in the genome of Arabidopsis thaliana and its implications for the genome organization of plants
Previous work has shown that, in the large genomes of three Gramineae [rice, maize, and barley: 415, 2,500, and 5,300 megabases (Mb), respectively] most genes are clustered in long DNA segments (collectively called the \"gene space\") that represent a small fraction (12-24%) of nuclear DNA, cover a very narrow (0.8-1.6%) GC range, are separated by vast expanses of gene-empty sequences. In the present work, we have analyzed the small (ca. 120 Mb) nuclear genome of Arabidopsis thaliana and shown that its organization is drastically different from that of the genomes of Gramineae. Indeed, (i) genes are distributed over about 85% of the main band of DNA in CsCl and cover an 8% GC range; (ii) ORFs are fairly evenly distributed in long ( 50 kb) sequences from GenBank that amount to about 10 Mb; and (iii) the GC levels of protein-coding sequences (and of their third codon positions) are correlated with the GC levels of their flanking sequences. The different pattern of gene distribution of Arabidopsis compared with Gramineae appears to be because the genomes of the latter comprise (i) many large gene-empty regions separating gene clusters and (ii) abundant transposons in the intergenic sequences of gene clusters. Both sequences are absent or very scarce in the Arabidopsis genome. These observations provide a comparative view of angiosperm genome organization
Guanine-cytosine contents of the host and symbiont cDNA in a symbiotic coral
:  Hermatypic (reef‐building) corals harbor dinoflagellate endo‐symbionts Symbiodinium spp. In studying gene expression in such symbiotic corals, problems arise regarding how to distinguish the coral and symbiont mRNA, and how to estimate their fractions in the mRNA population of the holobiont (symbiotic complex of the coral and Symbiodinium cells). In this study, these issues were addressed using juveniles of hermatypic coral Acropora tenuis in symbiosis with Symbiodinium cells of strain PL‐TS‐1. First, the guanine‐cytosine (GC) contents were determined in expressed sequence tags (EST) from PL‐TS‐1 cells cultured in vitro and symbiont‐free larvae of A. tenuis, and their average GC contents were found to be significantly different. The average GC content of the EST from the holobiont was much closer to that of A. tenuis larvae, suggesting that the majority (>90%) of mRNA isolated from the holobiont originated in the host. In protein‐coding sequences, little overlap was observed between the GC‐content distributions of PL‐TS‐1 cells and A. tenuis larvae. All of the coding sequences (n = 59) found in the A. tenuis EST had GC contents below 0.5, whereas the GC content exceeded 0.5 in the majority (43/44) of coding sequences from the nuclear genome of PL‐TS‐1 cells.