Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,470,532 result(s) for "CLINICAL TRIALS"
Sort by:
Medical Research for Hire
Today, more than 75 percent of pharmaceutical drug trials in the United States are being conducted in the private sector. Once the sole province of academic researchers, these important studies are now being outsourced to non-academic physicians. According to Jill A. Fisher, this major change in the way medical research is performed is the outcome of two problems in U.S. health care: decreasing revenue for physicians and decreasing access to treatment for patients. As physicians report diminishing income due to restrictive relationships with insurers, increasing malpractice insurance premiums, and inflated overhead costs to operate private practices, they are attracted to pharmaceutical contract research for its lucrative return. Clinical trials also provide limited medical access to individuals who have no or inadequate health insurance because they offer \"free\" doctors' visits, diagnostic tests, and medications to participants. Focusing on the professional roles of those involved, as well as key research practices, Fisher assesses the risks and advantages for physicians and patients alike when pharmaceutical drug studies are used as an alternative to standard medical care. A volume in the Critical Issues in Health and Medicine series, edited by Rima D. Apple and Janet Golden
Key design considerations for adaptive clinical trials: a primer for clinicians
This article reviews important considerations for researchers who are designing adaptive clinical trials. These differ from conventional clinical trials because they allow and even enforce continual modifications to key components of trial design while data are being collected. This innovative approach has the potential to reduce resource use, decrease time to trial completion, limit allocation of participants to inferior interventions, and improve the likelihood that trial results will be scientifically or clinically relevant. Adaptive designs have mostly been used in trials evaluating drugs, but their use is spreading. The US Food and Drug Administration recently issued guidance on adaptive trial designs, which highlighted general principles and different types of adaptive clinical trials but did not provide concrete guidance about important considerations in designing such trials. Decisions to adapt a trial are not arbitrary; they are based on decision rules that have been rigorously examined via statistical simulations before the first trial participant is enrolled. The authors review important characteristics of adaptive trials and common types of study modifications and provide a practical guide, illustrated with a case study, to aid investigators who are planning an adaptive clinical trial
Online Patient Recruitment in Clinical Trials: Systematic Review and Meta-Analysis
Recruitment for clinical trials continues to be a challenge, as patient recruitment is the single biggest cause of trial delays. Around 80% of trials fail to meet the initial enrollment target and timeline, and these delays can result in lost revenue of as much as US $8 million per day for drug developing companies. This study aimed to conduct a systematic review and meta-analysis examining the effectiveness of online recruitment of participants for clinical trials compared with traditional in-clinic/offline recruitment methods. Data on recruitment rates (the average number of patients enrolled in the study per month and per day of active recruitment) and conversion rates (the percentage of participants screened who proceed to enroll into the clinical trial), as well as study characteristics and patient demographics were collected from the included studies. Differences in online and offline recruitment rates and conversion rates were examined using random effects models. Further, a nonparametric paired Wilcoxon test was used for additional analysis on the cost-effectiveness of online patient recruitment. All data analyses were conducted in R language, and P<.05 was considered significant. In total, 3861 articles were screened for inclusion. Of these, 61 studies were included in the review, and 23 of these were further included in the meta-analysis. We found online recruitment to be significantly more effective with respect to the recruitment rate for active days of recruitment, where 100% (7/7) of the studies included had a better online recruitment rate compared with offline recruitment (incidence rate ratio [IRR] 4.17, P=.04). When examining the entire recruitment period in months we found that 52% (12/23) of the studies had a better online recruitment rate compared with the offline recruitment rate (IRR 1.11, P=.71). For cost-effectiveness, we found that online recruitment had a significantly lower cost per enrollee compared with offline recruitment (US $72 vs US $199, P=.04). Finally, we found that 69% (9/13) of studies had significantly better offline conversion rates compared with online conversion rates (risk ratio 0.8, P=.02). Targeting potential participants using online remedies is an effective approach for patient recruitment for clinical research. Online recruitment was both superior in regard to time efficiency and cost-effectiveness compared with offline recruitment. In contrast, offline recruitment outperformed online recruitment with respect to conversion rate.
Impact of blinding on estimated treatment effects in randomised clinical trials: meta-epidemiological study
AbstractObjectivesTo study the impact of blinding on estimated treatment effects, and their variation between trials; differentiating between blinding of patients, healthcare providers, and observers; detection bias and performance bias; and types of outcome (the MetaBLIND study).DesignMeta-epidemiological study.Data sourceCochrane Database of Systematic Reviews (2013-14).Eligibility criteria for selecting studiesMeta-analyses with both blinded and non-blinded trials on any topic.Review methodsBlinding status was retrieved from trial publications and authors, and results retrieved automatically from the Cochrane Database of Systematic Reviews. Bayesian hierarchical models estimated the average ratio of odds ratios (ROR), and estimated the increases in heterogeneity between trials, for non-blinded trials (or of unclear status) versus blinded trials. Secondary analyses adjusted for adequacy of concealment of allocation, attrition, and trial size, and explored the association between outcome subjectivity (high, moderate, low) and average bias. An ROR lower than 1 indicated exaggerated effect estimates in trials without blinding.ResultsThe study included 142 meta-analyses (1153 trials). The ROR for lack of blinding of patients was 0.91 (95% credible interval 0.61 to 1.34) in 18 meta-analyses with patient reported outcomes, and 0.98 (0.69 to 1.39) in 14 meta-analyses with outcomes reported by blinded observers. The ROR for lack of blinding of healthcare providers was 1.01 (0.84 to 1.19) in 29 meta-analyses with healthcare provider decision outcomes (eg, readmissions), and 0.97 (0.64 to 1.45) in 13 meta-analyses with outcomes reported by blinded patients or observers. The ROR for lack of blinding of observers was 1.01 (0.86 to 1.18) in 46 meta-analyses with subjective observer reported outcomes, with no clear impact of degree of subjectivity. Information was insufficient to determine whether lack of blinding was associated with increased heterogeneity between trials. The ROR for trials not reported as double blind versus those that were double blind was 1.02 (0.90 to 1.13) in 74 meta-analyses.ConclusionNo evidence was found for an average difference in estimated treatment effect between trials with and without blinded patients, healthcare providers, or outcome assessors. These results could reflect that blinding is less important than often believed or meta-epidemiological study limitations, such as residual confounding or imprecision. At this stage, replication of this study is suggested and blinding should remain a methodological safeguard in trials.
Adaptive Designs for Clinical Trials
Investigators use adaptive trial designs to alter basic features of an ongoing trial. This approach obtains the most information possible in an unbiased way while putting the fewest patients at risk. In this review, the authors discuss selected issues in adaptive design. Randomized clinical trials serve as the standard for clinical research and have contributed immensely to advances in patient care. Nevertheless, several shortcomings of randomized clinical trials have been noted, including the need for a large sample size and long study duration, the lack of power to evaluate efficacy overall or in important subgroups, and cost. These and other limitations have been widely acknowledged as limiting medical innovation. 1 Adaptive trial design has been proposed as a means to increase the efficiency of randomized clinical trials, potentially benefiting trial participants and future patients while reducing costs and enhancing the likelihood of finding . . .
Compliance with legal requirement to report clinical trial results on ClinicalTrials.gov: a cohort study
Failure to report the results of a clinical trial can distort the evidence base for clinical practice, breaches researchers' ethical obligations to participants, and represents an important source of research waste. The Food and Drug Administration Amendments Act (FDAAA) of 2007 now requires sponsors of applicable trials to report their results directly onto ClinicalTrials.gov within 1 year of completion. The first trials covered by the Final Rule of this act became due to report results in January, 2018. In this cohort study, we set out to assess compliance. We downloaded data for all registered trials on ClinicalTrials.gov each month from March, 2018, to September, 2019. All cross-sectional analyses in this manuscript were performed on data extracted from ClinicalTrials.gov on Sept 16, 2019; monthly trends analysis used archived data closest to the 15th day of each month from March, 2018, to September, 2019. Our study cohort included all applicable trials due to report results under FDAAA. We excluded all non-applicable trials, those not yet due to report, and those given a certificate allowing for delayed reporting. A trial was considered reported if results had been submitted and were either publicly available, or undergoing quality control review at ClinicalTrials.gov. A trial was considered compliant if these results were submitted within 1 year of the primary completion date, as required by the legislation. We described compliance with the FDAAA 2007 Final Rule, assessed trial characteristics associated with results reporting using logistic regression models, described sponsor-level reporting, examined trends in reporting, and described time-to-report using the Kaplan-Meier method. 4209 trials were due to report results; 1722 (40·9%; 95% CI 39·4–42·2) did so within the 1-year deadline. 2686 (63·8%; 62·4–65·3) trials had results submitted at any time. Compliance has not improved since July, 2018. Industry sponsors were significantly more likely to be compliant than non-industry, non-US Government sponsors (odds ratio [OR] 3·08 [95% CI 2·52–3·77]), and sponsors running large numbers of trials were significantly more likely to be compliant than smaller sponsors (OR 11·84 [9·36–14·99]). The median delay from primary completion date to submission date was 424 days (95% CI 412–435), 59 days higher than the legal reporting requirement of 1 year. Compliance with the FDAAA 2007 is poor, and not improving. To our knowledge, this is the first study to fully assess compliance with the Final Rule of the FDAAA 2007. Poor compliance is likely to reflect lack of enforcement by regulators. Effective enforcement and action from sponsors is needed; until then, open public audit of compliance for each individual sponsor may help. We will maintain updated compliance data for each individual sponsor and trial at fdaaa.trialstracker.net. Laura and John Arnold Foundation.
SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials
High quality protocols facilitate proper conduct, reporting, and external review of clinical trials. However, the completeness of trial protocols is often inadequate. To help improve the content and quality of protocols, an international group of stakeholders developed the SPIRIT 2013 Statement (Standard Protocol Items: Recommendations for Interventional Trials). The SPIRIT Statement provides guidance in the form of a checklist of recommended items to include in a clinical trial protocol. This SPIRIT 2013 Explanation and Elaboration paper provides important information to promote full understanding of the checklist recommendations. For each checklist item, we provide a rationale and detailed description; a model example from an actual protocol; and relevant references supporting its importance. We strongly recommend that this explanatory paper be used in conjunction with the SPIRIT Statement. A website of resources is also available (www.spirit-statement.org). The SPIRIT 2013 Explanation and Elaboration paper, together with the Statement, should help with the drafting of trial protocols. Complete documentation of key trial elements can facilitate transparency and protocol review for the benefit of all stakeholders.
Pragmatic Trials
In pragmatic trials, participants are broadly representative of people who will receive a treatment or diagnostic strategy, and the outcomes affect day-to-day care. The authors review the unique features of pragmatic trials through a wide-ranging series of exemplar trials. Pragmatism in clinical trials arose from concerns that many trials did not adequately inform practice because they were optimized to determine efficacy. 1 Because such trials were performed with relatively small samples at sites with experienced investigators and highly selected participants, they could be overestimating benefits and underestimating harm. This led to the belief that more pragmatic trials, designed to show the real-world effectiveness of the intervention in broad patient groups, were required. Medical researchers, both academic and commercial, must deliver health care innovations (drugs, devices, or other interventions) that are safe, beneficial, and cost-effective, and they must identify the subgroups . . .