Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
14,854 result(s) for "COMPUTERS - Artificial Intelligence - Natural Language Processing"
Sort by:
Killer ChatGPT prompts : harness the power of AI for success and profit
By now, you've heard of ChatGPT and its incredible potential. You may even have tried to use it a few times just to see it in action for yourself. But have you ever wondered what ChatGPT is truly capable of? 'Killer ChatGPT Prompts' will show you the true power of Large Language Models (LLMs) like ChatGPT. Veteran IT educator and author Guy Hart-Davis shows you the exact prompts he's discovered to unlock a huge variety of expert business writing, like emails and proposals, data analysis use cases, lesson plans, information exchange scripts, and more! You'll also find: the perfect prompts for a huge array of job roles, including those in sales and marketing, web development, HR, customer support, and more. Use cases for ChatGPT in the home, with your kids, and in your relationship.
The Autonomous Enterprise
The journey towards the autonomous enterprise has begun; there are already companies operating in a highly automated way. Every corporate decision-maker will need to understand the opportunities and risks that the autonomous enterprise presents, to learn how best to navigate the shifting competitive landscape on their journey of change. This book is your guide to this innovation, presenting the concepts in real world contexts by covering the art of the possible today and providing glimpses into the future of business.
Language and the rise of the algorithm
\"A wide-ranging history of the intellectual developments that produced the modern idea of the algorithm. Bringing together the histories of mathematics, computer science, and linguistic thought, Language and the Rise of the Algorithm reveals how recent developments in artificial intelligence are reopening an issue that troubled mathematicians long before the computer age. How do you draw the line between computational rules and the complexities of making systems comprehensible to people? Here Jeffrey M. Binder offers a compelling tour of four visions of universal computation that addressed this issue in very different ways: G. W. Leibniz's calculus ratiocinator; a universal algebra scheme Nicolas de Condorcet designed during the French Revolution; George Boole's nineteenth-century logic system; and the early programming language ALGOL, whose name is short for algorithmic language. These episodes show that symbolic computation has repeatedly become entangled in debates about the nature of communication. To what extent can meaning be controlled by individuals, like the values of a and b in algebra, and to what extent is meaning inevitably social? By attending to this long-neglected question, we come to see that the modern idea of the algorithm is implicated in a long history of attempts to maintain a disciplinary boundary separating technical knowledge from the languages people speak day to day. Machine learning, in its increasing dependence on words, now places this boundary in jeopardy, making its stakes all the more urgent to understand. The idea of the algorithm is a levee holding back the social complexity of language, and it is about to break. This book is about the flood that inspired its construction. \"-- Provided by publisher.
Counseling (ro)bot as a use case for 5G/6G
This paper presents a counseling (ro)bot called Visual Counseling Agent (VICA) which focuses on remote mental healthcare. It is an agent system leveraging artificial intelligence (AI) to aid mentally distressed persons through speech conversation. The system terminals are connected to servers by the Internet exploiting Cloud-nativeness, so that anyone who has any type of terminal can use it from anywhere. Despite a promising voice communication interface, VICA shows limitations in conversation continuity on conventional 4G networks. Concretely, the use of the current 4G networks produces word dropping, delayed response, and the occasional connection failure. The objective of this paper is to mitigate these issues by leveraging a 5G/6G slice inclusive of mobile/multiple edge computing (MEC). First, we propose and partly implement the enhanced and advanced version of VICA. Servers of enhanced versions collaborate to increase speech recognition reliability. Although it significantly increases generated data volume, the advanced version enables a recognition of the facial expressions to greatly enhance counseling quality. Then, we propose a quality assurance mechanism using multiple levels of catalog, as well as 5G/6G slice inclusive of MEC, and conduct experiments to uncover issues related to the 4G. Results indicate that the number of speech recognition errors in Internet Cloud is more than twofold compared to edge computing, implying that quality assurance using 5G/6G in conjunction with VICA Counseling (ro)bot has higher efficiency.
Learning to Prompt for Vision-Language Models
Large pre-trained vision-language models like CLIP have shown great potential in learning representations that are transferable across a wide range of downstream tasks. Different from the traditional representation learning that is based mostly on discretized labels, vision-language pre-training aligns images and texts in a common feature space, which allows zero-shot transfer to a downstream task via prompting, i.e., classification weights are synthesized from natural language describing classes of interest. In this work, we show that a major challenge for deploying such models in practice is prompt engineering, which requires domain expertise and is extremely time-consuming—one needs to spend a significant amount of time on words tuning since a slight change in wording could have a huge impact on performance. Inspired by recent advances in prompt learning research in natural language processing (NLP), we propose Context Optimization (CoOp), a simple approach specifically for adapting CLIP-like vision-language models for downstream image recognition. Concretely, CoOp models a prompt’s context words with learnable vectors while the entire pre-trained parameters are kept fixed. To handle different image recognition tasks, we provide two implementations of CoOp: unified context and class-specific context. Through extensive experiments on 11 datasets, we demonstrate that CoOp requires as few as one or two shots to beat hand-crafted prompts with a decent margin and is able to gain significant improvements over prompt engineering with more shots, e.g., with 16 shots the average gain is around 15% (with the highest reaching over 45%). Despite being a learning-based approach, CoOp achieves superb domain generalization performance compared with the zero-shot model using hand-crafted prompts.
CLIP-Adapter: Better Vision-Language Models with Feature Adapters
Large-scale contrastive vision-language pretraining has shown significant progress in visual representation learning. Unlike traditional visual systems trained by a fixed set of discrete labels, a new paradigm was introduced in Radford et al. (International conference on machine learning, PMLR, 2021) to directly learn to align images with raw texts in an open-vocabulary setting. On downstream tasks, a carefully chosen text prompt is employed to make zero-shot predictions. To avoid non-trivial prompt engineering, context optimization (Zhou et al. in Int J Comput Vis 130(9):2337–2348, 2022) has been proposed to learn continuous vectors as task-specific prompts with few-shot training examples. In this paper, we show that there is an alternative path to achieve better vision-language models other than prompt tuning. While prompt tuning is for the textual inputs, we propose CLIP-Adapter to conduct fine-tuning with feature adapters on either visual or language branch. Specifically, CLIP-Adapter adopts an additional bottleneck layer to learn new features and performs residual-style feature blending with the original pretrained features. As a consequence, CLIP-Adapter is able to outperform context optimization while maintaining a simple design. Experiments and extensive ablation studies on various visual classification tasks demonstrate the effectiveness of our approach.
Large language models (LLMs): survey, technical frameworks, and future challenges
Artificial intelligence (AI) has significantly impacted various fields. Large language models (LLMs) like GPT-4, BARD, PaLM, Megatron-Turing NLG, Jurassic-1 Jumbo etc., have contributed to our understanding and application of AI in these domains, along with natural language processing (NLP) techniques. This work provides a comprehensive overview of LLMs in the context of language modeling, word embeddings, and deep learning. It examines the application of LLMs in diverse fields including text generation, vision-language models, personalized learning, biomedicine, and code generation. The paper offers a detailed introduction and background on LLMs, facilitating a clear understanding of their fundamental ideas and concepts. Key language modeling architectures are also discussed, alongside a survey of recent works employing LLM methods for various downstream tasks across different domains. Additionally, it assesses the limitations of current approaches and highlights the need for new methodologies and potential directions for significant advancements in this field.
The Role of ChatGPT in Data Science: How AI-Assisted Conversational Interfaces Are Revolutionizing the Field
ChatGPT, a conversational AI interface that utilizes natural language processing and machine learning algorithms, is taking the world by storm and is the buzzword across many sectors today. Given the likely impact of this model on data science, through this perspective article, we seek to provide an overview of the potential opportunities and challenges associated with using ChatGPT in data science, provide readers with a snapshot of its advantages, and stimulate interest in its use for data science projects. The paper discusses how ChatGPT can assist data scientists in automating various aspects of their workflow, including data cleaning and preprocessing, model training, and result interpretation. It also highlights how ChatGPT has the potential to provide new insights and improve decision-making processes by analyzing unstructured data. We then examine the advantages of ChatGPT’s architecture, including its ability to be fine-tuned for a wide range of language-related tasks and generate synthetic data. Limitations and issues are also addressed, particularly around concerns about bias and plagiarism when using ChatGPT. Overall, the paper concludes that the benefits outweigh the costs and ChatGPT has the potential to greatly enhance the productivity and accuracy of data science workflows and is likely to become an increasingly important tool for intelligence augmentation in the field of data science. ChatGPT can assist with a wide range of natural language processing tasks in data science, including language translation, sentiment analysis, and text classification. However, while ChatGPT can save time and resources compared to training a model from scratch, and can be fine-tuned for specific use cases, it may not perform well on certain tasks if it has not been specifically trained for them. Additionally, the output of ChatGPT may be difficult to interpret, which could pose challenges for decision-making in data science applications.
Deep Learning for Generic Object Detection: A Survey
Object detection, one of the most fundamental and challenging problems in computer vision, seeks to locate object instances from a large number of predefined categories in natural images. Deep learning techniques have emerged as a powerful strategy for learning feature representations directly from data and have led to remarkable breakthroughs in the field of generic object detection. Given this period of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought about by deep learning techniques. More than 300 research contributions are included in this survey, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics. We finish the survey by identifying promising directions for future research.