Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
129,886
result(s) for
"COMPUTERS -- Computer Vision "
Sort by:
Computer vision for visual effects
\"Modern blockbuster movies seamlessly introduce impossible characters and action into real-world settings using digital visual effects. These effects are made possible by research from the field of computer vision, the study of how to automatically understand images. Computer Vision for Visual Effects will educate students, engineers and researchers about the fundamental computer vision principles and state-of-the-art algorithms used to create cutting-edge visual effects for movies and television. The author describes classical computer vision algorithms used on a regular basis in Hollywood (such as blue screen matting, structure from motion, optical flow and feature tracking) and exciting recent developments that form the basis for future effects (such as natural image matting, multi-image compositing, image retargeting and view synthesis). He also discusses the technologies behind motion capture and three-dimensional data acquisition. More than 200 original images demonstrating principles, algorithms and results, along with in-depth interviews with Hollywood visual effects artists, tie the mathematical concepts to real-world filmmaking\"-- Provided by publisher.
Introduction to EEG- and speech-based emotion recognition
by
Mehrotra, Suresh C.
,
Gawali, Bharti W.
,
Abhang, Priyanka A
in
Brain-computer interfaces
,
Electroencephalography
,
Emotions
2016
Introduction to EEG- and Speech-Based Emotion Recognition Methods examines the background, methods, and utility of using electroencephalograms (EEGs) to detect and recognize different emotions.By incorporating these methods in brain-computer interface (BCI), we can achieve more natural, efficient communication between humans and computers.
Understanding machine learning : from foundations to algorithms
\"Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering\"-- Provided by publisher.
Going Deeper than Tracking: A Survey of Computer-Vision Based Recognition of Animal Pain and Emotions
by
Carreira Lencioni, Gabriel
,
Kjellström, Hedvig
,
Salah, Albert Ali
in
Affect (Psychology)
,
Animal behavior
,
Animal welfare
2023
Advances in animal motion tracking and pose recognition have been a game changer in the study of animal behavior. Recently, an increasing number of works go ‘deeper’ than tracking, and address automated recognition of animals’ internal states such as emotions and pain with the aim of improving animal welfare, making this a timely moment for a systematization of the field. This paper provides a comprehensive survey of computer vision-based research on recognition of pain and emotional states in animals, addressing both facial and bodily behavior analysis. We summarize the efforts that have been presented so far within this topic—classifying them across different dimensions, highlight challenges and research gaps, and provide best practice recommendations for advancing the field, and some future directions for research.
Journal Article
Kernel methods and machine learning
\"Offering a fundamental basis in kernel-based learning theory, this book covers both statistical and algebraic principles. It provides over 30 major theorems for kernel-based supervised and unsupervised learning models. The first of the theorems establishes a condition, arguably necessary and sufficient, for the kernelization of learning models. In addition, several other theorems are devoted to proving mathematical equivalence between seemingly unrelated models. With over 25 closed-form and iterative algorithms, the book provides a step-by-step guide to algorithmic procedures and analysing which factors to consider in tackling a given problem, enabling readers to improve specifically designed learning algorithms, build models for new applications and develop efficient techniques suitable for green machine learning technologies. Numerous real-world examples and over 200 problems, several of which are Matlab-based simulation exercises, make this an essential resource for graduate students and professionals in computer science, electrical and biomedical engineering. Solutions to problems are provided online for instructors\"-- Provided by publisher.
Human-AI Teaming
by
Integration, Board on Human-Systems
,
Education, Division of Behavioral and Social Sciences and
,
National Academies of Sciences, Engineering, and Medicine
in
Artificial intelligence
,
Human-computer interaction
,
Technology
2022
Although artificial intelligence (AI) has many potential benefits, it has also been shown to suffer from a number of challenges for successful performance in complex real-world environments such as military operations, including brittleness, perceptual limitations, hidden biases, and lack of a model of causation important for understanding and predicting future events. These limitations mean that AI will remain inadequate for operating on its own in many complex and novel situations for the foreseeable future, and that AI will need to be carefully managed by humans to achieve their desired utility.
Human-AI Teaming: State-of-the-Art and Research Needs examines the factors that are relevant to the design and implementation of AI systems with respect to human operations. This report provides an overview of the state of research on human-AI teaming to determine gaps and future research priorities and explores critical human-systems integration issues for achieving optimal performance.
The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection
by
Steger Carsten
,
Fauser, Michael
,
Batzner Kilian
in
Annotations
,
Anomalies
,
Artificial neural networks
2021
The detection of anomalous structures in natural image data is of utmost importance for numerous tasks in the field of computer vision. The development of methods for unsupervised anomaly detection requires data on which to train and evaluate new approaches and ideas. We introduce the MVTec anomaly detection dataset containing 5354 high-resolution color images of different object and texture categories. It contains normal, i.e., defect-free images intended for training and images with anomalies intended for testing. The anomalies manifest themselves in the form of over 70 different types of defects such as scratches, dents, contaminations, and various structural changes. In addition, we provide pixel-precise ground truth annotations for all anomalies. We conduct a thorough evaluation of current state-of-the-art unsupervised anomaly detection methods based on deep architectures such as convolutional autoencoders, generative adversarial networks, and feature descriptors using pretrained convolutional neural networks, as well as classical computer vision methods. We highlight the advantages and disadvantages of multiple performance metrics as well as threshold estimation techniques. This benchmark indicates that methods that leverage descriptors of pretrained networks outperform all other approaches and deep-learning-based generative models show considerable room for improvement.
Journal Article
Augmented human : how technology is shaping the new reality
Augmented reality (AR) blurs the boundary between the physical and digital worlds. In AR's current exploration phase, innovators are beginning to create compelling and contextually rich applications that enhance a user's everyday experiences. In this book, Dr. Helen Papagiannis, a world leading expert in the field, introduces you to AR: how it's evolving, where the opportunities are, and where it's headed.
Artificial Intelligence in Radiation Therapy
2023
This textbook covers a basis of mathematical algorithm in artificial intelligence and clinical adaptation and contribution of AI in radiotherapy. More experienced practitioners and researchers and members of medical physics communities, such as AAPM, ASTRO, and ESTRO, would find this book extremely useful.