Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
151,264 result(s) for "CONTENT ANALYSIS"
Sort by:
Theme in Qualitative Content Analysis and Thematic Analysis
Qualitatives Design besteht aus verschiedenen Ansätzen zur Datenerhebung und -analyse, die insbesondere für die Erstellung kultureller und kontextueller Beschreibungen und die Interpretation sozialer Phänomene anwendbar sind. Qualitative Inhaltsanalyse (QCA) und thematische Analyse (TA) stellen beides qualitative Ansätze dar, die üblicherweise von Forscher_innen aus unterschiedlichen Disziplinen gleichermaßen eingesetzt werden. Allerdings besteht in der internationalen Literatur eine Leerstelle in Bezug auf den Begriff von \"Thema\" in beiden Ansätzen und des Prozesses der Entwicklung von Themen. Daher gehen wir in unserem Beitrag auf diese Leerstelle ein und stellen Unterschiede und Ähnlichkeiten zwischen beiden Methoden in Bezug auf das \"Thema\" als Endprodukt der Datenanalyse dar. Zur Unterstützung unserer Sichtweisen und zur Erstellung international fundierter analytischer Begriffe von \"Thema\" greifen wir auf die aktuelle Literatur aus unterschiedlichen Disziplinen zurück. Wir gehen davon aus, dass Forscher_innen von einem vertieften Verständnis des Prozesses der Themenentwicklung in mehreren Hinsichten profitieren, nämlich bei der Auswahl einer geeigneten Methode für die Beantwortung ihrer Forschungsfrage, bei der Erzielung qualitativ hochwertiger und valider Ergebnisse sowie dabei, den analytischen Anforderungen an QCA und TA gerecht zu werden.
Bayesian Model Averaging: A Systematic Review and Conceptual Classification
Bayesian model averaging (BMA) provides a coherent and systematic mechanism for accounting for model uncertainty. It can be regarded as an direct application of Bayesian inference to the problem of model selection, combined estimation and prediction. BMA produces a straightforward model choice criterion and less risky predictions. However, the application of BMA is not always straightforward, leading to diverse assumptions and situational choices on its different aspects. Despite the widespread application of BMA in the literature, there were not many accounts of these differences and trends besides a few landmark revisions in the late 1990s and early 2000s, therefore not accounting for advancements made in the last decades. In this work, we present an account of these developments through a careful content analysis of 820 articles in BMA published between 1996 and 2016. We also develop a conceptual classification scheme to better describe this vast literature, understand its trends and future directions and provide guidance for the researcher interested in both the application and development of the methodology. The results of the classification scheme and content review are then used to discuss the present and future of the BMA literature.
Multilingual text analysis : challenges, models, and approaches
Text analytics (TA) covers a very wide research area. Its overarching goal is to discover and present knowledge - facts, rules, and relationships - that is otherwise hidden in the textual content. The authors of this book guide us in a quest to attain this knowledge automatically, by applying various machine learning techniques. This book describes recent development in multilingual text analysis. It covers several specific examples of practical TA applications, including their problem statements, theoretical background, and implementation of the proposed solution. The reader can see which preprocessing techniques and text representation models were used, how the evaluation process was designed and implemented, and how these approaches can be adapted to multilingual domains.
No Longer Lost in Translation: Evidence that Google Translate Works for Comparative Bag-of-Words Text Applications
Automated text analysis allows researchers to analyze large quantities of text. Yet, comparative researchers are presented with a big challenge: across countries people speak different languages. To address this issue, some analysts have suggested using Google Translate to convert all texts into English before starting the analysis (Lucas et al. 2015). But in doing so, do we get lost in translation? This paper evaluates the usefulness of machine translation for bag-of-words models—such as topic models. We use the europarl dataset and compare term-document matrices (TDMs) as well as topic model results from gold standard translated text and machine-translated text. We evaluate results at both the document and the corpus level. We first find TDMs for both text corpora to be highly similar, with minor differences across languages. What is more, we find considerable overlap in the set of features generated from human-translated and machine-translated texts. With regard to LDA topic models, we find topical prevalence and topical content to be highly similar with again only small differences across languages. We conclude that Google Translate is a useful tool for comparative researchers when using bag-of-words text models.
The Changing Uses of Herbarium Data in an Era of Global Change
Widespread specimen digitization has greatly enhanced the use of herbarium data in scientific research. Publications using herbarium data have increased exponentially over the last century. Here, we review changing uses of herbaria through time with a computational text analysis of 13,702 articles from 1923 to 2017 that quantitatively complements traditional review approaches. Although maintaining its core contribution to taxonomic knowledge, herbarium use has diversified from a few dominant research topics a century ago (e.g., taxonomic notes, botanical history, local observations), with many topics only recently emerging (e.g., biodiversity informatics, global change biology, DNA analyses). Specimens are now appreciated as temporally and spatially extensive sources of genotypic, phenotypic, and biogeographic data. Specimens are increasingly used in ways that influence our ability to steward future biodiversity. As we enter the Anthropocene, herbaria have likewise entered a new era with enhanced scientific, educational, and societal relevance.
Numerical algorithms for personalized search in self-organizing information networks
\"This book lays out the theoretical groundwork for personalized search and reputation management, both on the Web and in peer-to-peer and social networks.\" The book develops scalable algorithms that exploit the graphlike properties underlying personalized search and reputation management, and delves into realistic scenarios regarding web-scale data.--[book cover]
Qualitative Content Analysis: Conceptualizations and Challenges in Research Practice—Introduction to the FQS Special Issue \Qualitative Content Analysis I\
In diesem Beitrag führen wir in den ersten Teil der Schwerpunktausgabe zur qualitativen Inhaltsanalyse (QIA) ein. In einem ersten Schritt beschreiben wir die Überlegungen, die dem Schwerpunkt zugrunde liegen, und erläutern die Unterteilung in zwei Teilausgaben. Anschließend geben wir einen Überblick über zentrale Fragestellungen in der gegenwärtigen Methodenliteratur zur QIA und identifizieren vier Kernbereiche: 1. die Konzeptualisierung der QIA als hybride Kombination quantitativer und qualitativer Elemente oder als genuin qualitative Methode; 2. die Relation zwischen dem deutschsprachigen und dem internationalen Methodendiskurs; 3. die Frage, ob sich theoretische und/oder epistemologische Grundlagen der QIA identifizieren lassen; 4. fehlende Transparenz bei der Dokumentation von Anwendungen der Methode. In einem nächsten Schritt gehen wir auf den Prozess der Erstellung der Schwerpunktausgabe ein und erläutern die Struktur und die Zusammenhänge zwischen den Beiträgen. In dem vorliegenden ersten Teil legen wir den Fokus auf Artikel zur Konzeptualisierung der QIA sowie auf Beiträge, in denen Herausforderungen bei der Methodenanwendung und Lösungsansätze beschrieben werden. Auf dieser Grundlage kommen wir zu dem Schluss, dass sich in der gegenwärtigen Methodenliteratur durchaus unterschiedliche Konzeptionen der QIA identifizieren lassen. Dies spiegelt sich auch in der Vielfalt der Herausforderungen bei der Anwendung der Methode wider und in den unterschiedlichen kreativen Umgangsweisen mit diesen Herausforderungen, wie sie von den Autor_innen dieser ersten Teilausgabe beschrieben werden.